حرکت به سوی پایداری زیستمحیطی برداشت گندم در سیستمهای دیم و آبی
Subject Areas : Environmental policy and managementشمساله عبداله پور 1 , ارمغان کوثری مقدم 2 , محمد بنایان 3
1 - گروه مهندسی بیوسیستم، دانشگاه تبریز، تبریز، ایران
2 - گروه مهندسی بیوسیستم، دانشگاه تبریز، تبریز، ایران
3 - گروه اگروتکنولوژی، دانشگاه فردوسی مشهد، مشهد، ایران
Keywords: انرژی, گندم, اگزرژی, اثرات زیستمحیطی, امرژی,
Abstract :
این مطالعه با هدف ارزیابی پایداری زیستمحیطی برداشت گندم در سیستمهای کشاورزی دیم و آبی در سه منطقه مختلف در ایران، شامل ساری، مشهد و پارسآباد مغان انجام شد. چهار شاخص پایداری انرژی، امرژی، اگزرژی و انتشار گازهای گلخانهای در این پژوهش بررسی شدند. نتایج نشان داد که کارایی انرژی عملیات برداشت در سیستمهای آبی بیشتر از سیستمهای دیم بوده است. نتایج حاصل از تحلیل امرژی نشان داد که شاخص پایداری زیستمحیطی در سیستمهای دیم در مشهد، پارسآباد مغان و ساری به ترتیب 036/0، 035/0 و 034/0 بوده است. نتایج تحلیل اگزرژی نیز نشان داد که کارایی اگزرژی عملیات برداشت در سیستمهای دیم و آبی در ساری و پارسآباد مغان به ترتیب با 07/56 و 72/128 بیشتر از مناطق دیگر بوده است. مجموع انتشار گازهای گلخانهای در عملیات برداشت در ساری، پارسآباد مغان و مشهد در سیستمهای دیم کمتر از سیستمهای آبی تعیین شد (به ترتیب 88/54، 64/47 و 03/36 کیلوگرم کربندیاکسید در هکتار در مقایسه با 52/67، 56/66 و 22/56 کیلوگرم کربندیاکسید در هکتار). به صورت کلی، عملیات برداشت گندم در ساری و پارسآباد مغان به ترتیب در سیستمهای کشت دیم و آبی دارای پایداری زیستمحیطی بالاتری بودند.
Abbas, D., & Handler, R. M. (2018). Life-cycle assessment of forest harvesting and transportation operations in Tennessee. Journal of Cleaner Production, 176, 512-520.
Afsharzade, N., Papzan, A., Delangizan, S., & Ashjaee, M. (2016). On-farm Energy use (Case of Dire County, Kermanshah Province). International Journal of Agricultural Management and Development, 6(2), 217-224.
Ajabshirchi, M., Taki, M., Abdi, R. Ghobadifar, A. & Ranjbar, I. (2012). Investigation of energy use efficiency for dry wheat production using data envelopment analysis (DEA) approach; case study: Silakhor Plain. Journal of Agricultural Machinery, 1(2), 122-132 (In Persian).
Arvidsson, J. (2010). Energy use efficiency in different tillage systems for winter wheat on a clay and silt loam in Sweden. European Journal of Agronomy, 33(3), 250-256.
Asgharipour, M. R. & Salehi, F. (2015). Energy use on wheat production: A comparative analysis of irrigated and dry-land wheat production systems in Kermanshah. Journal of Agroecology, 5(1), 1-11 (In Persian).
Asgharipour, M. R., Mousavinik, S. M., & Enayat, F. F. (2016). Evaluation of energy input and greenhouse gases emissions from alfalfa production in the Sistan Region, Iran. Energy Reports, 2, 135-140.
Bacenetti, J., Pessina, D., & Fiala, M. (2016). Environmental assessment of different harvesting solutions for Short Rotation Coppice plantations. Science of the Total Environment, 541, 210-217.
Bardant, T. B., Haq, M. S., Setiawan, A. A. R., Harianto, S., Waluyo, J., Mastur, A. I, & Wiloso, E. I. (2018). The renewability indicator and cumulative degree of perfection for gamboeng tea; part. 1, exergy calculation of fresh tea leaf. In E3S Web of Conferences (Vol. 74, p. 07003). EDP Sciences.
Beheshti Tabar, I., Keyhani, A., & Rafiee, S. (2010). Energy balance in Iran's agronomy (1990-2006). Renewable and Sustainable Energy Reviews, 14(2), 849-855.
Bernardi, B., Falcone, G., Stillitano, T., Benalia, S., Strano, A., Bacenetti, J., & De Luca, A. I. (2018). Harvesting system sustainability in Mediterranean olive cultivation. Science of the Total Environment, 625, 1446-1458.
Boersch M, Temple AP. (2017). Wheat Market Outlook and Price Report: August 8th. Sask Wheat Development Commission. Mercantile Consulting Venture Inc. Retrieved from http://www.saskwheat.ca/wheat-market-outlook. (2017).
Dyer, J. A., & Desjardins, R. L. (2006). Carbon dioxide emissions associated with the manufacturing of tractors and farm machinery in Canada. Biosystems Engineering, 93(1), 107-118.
Dyer, J. A., & Desjardins, R. L. (2003). Simulated farm fieldwork, energy consumption and related greenhouse gas emissions in Canada. Biosystems Engineering, 85(4), 503-513.
Fan, J., McConkey, B. G., Janzen, H. H., & Miller, P. R. (2018). Emergy and energy analysis as an integrative indicator of sustainability: A case study in semi-arid Canadian farmlands. Journal of Cleaner Production, 172, 428-437.
Ghaley, B. B., & Porter, J. R. (2013). Emergy synthesis of a combined food and energy production system compared to a conventional wheat (Triticum aestivum) production system. Ecological Indicators, 24, 534-542.
Ghaley, B. B., Kehli, N., & Mentler, A. (2018). Emergy synthesis of conventional fodder maize (Zea mays L.) production in Denmark. Ecological Indicators, 87, 144-151.
Ghorbani, R., Mondani, F., Amirmoradi, S., Feizi, H., Khorramdel, S., Teimouri, M., & Aghel, H. (2011). A case study of energy use and economic analysis of irrigated and dryland wheat production systems. Applied Energy, 88(1), 283-288.
Gokdogan, O., Erdogan, O., Eralp, O., & Zeybek, A. (2016). Energy efficiency analysis of cotton production in Turkey: a case study from Aydin province. Fresenius Environmental Bulletin 25(11), 4959-4964.
Hancock, J. N., Swetnam, L. D., & Benson, F. J. (1991). Calculating farm machinery field capacities. Agricultural Engineering Extension Publications. 20. https://uknowledge.uky.edu/aen_reports/20
Häni, F. J. (2006). Global agriculture in need of sustainability assessment. Sustainable agriculture from common principals to common practice. Proceedings and outputs of the first symposium of the International Forum on Assessing Sustainability in Agriculture (INFASA), Bern, Switzerland.
Hatirli, S. A., Ozkan, B., & Fert, C. (2005). An econometric analysis of energy input–output in Turkish agriculture. Renewable and Sustainable Energy Reviews, 9(6), 608-623.
Houshyar, E. (2017). Environmental impacts of irrigated and rain-fed barley production in Iran using life cycle assessment (LCA). Spanish Journal of Agricultural Research, 15(2), e0204, 1-13.
Hovelius, K., & Wall, G. (1998). Energy, exergy, and emergy analysis of a renewable energy system based on biomass production. ECOS, 98, 8-10.
Ilahi, S., Wu, Y., Raza, M. A. A., Wei, W., Imran, M., & Bayasgalankhuu, L. (2019). Optimization approach for improving energy efficiency and evaluation of greenhouse gas emission of wheat crop using data envelopment analysis. Sustainability, 11(12), 3409.
Jafari, M., Asgharipour, M. R., Ramroudi, M., Galavi, M., & Hadarbadi, G. (2018). Sustainability assessment of date and pistachio agricultural systems using energy, emergy and economic approaches. Journal of Cleaner Production, 193, 642-651.
Jokandan, M. J., Aghbashlo, M., & Mohtasebi, S. S. (2015). Comprehensive exergy analysis of an industrial-scale yogurt production plant. Energy, 93, 1832-1851.
Khanali, M., Movahedi, M., Yousefi, M., Jahangiri, S., & Khoshnevisan, B. (2016). Investigating energy balance and carbon footprint in saffron cultivation–a case study in Iran. Journal of Cleaner Production, 115, 162-171.
Khoshnevisan, B., Rafiee, S., Omid, M., Yousefi, M., & Movahedi, M. (2013). Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy, 52, 333-338.
Kiani, S., & Houshyar, E. (2012). Energy consumption of rainfed wheat production in conventional and conservation tillage systems. International Journal of Agriculture and Crop Sciences, 4(5), 213-219.
Kardoni, F., Ahmadi, M. J. A., & Bakhshi, M. R. (2015). Energy efficiency analysis and modeling the relationship between energy inputs and wheat yield in Iran. International Journal of Agricultural Management and Development, 5(4), 321-330.
Kumar, V., Saharawat, Y. S., Gathala, M. K., Jat, A. S., Singh, S. K., Chaudhary, N., & Jat, M. L. (2013). Effect of different tillage and seeding methods on energy use efficiency and productivity of wheat in the Indo-Gangetic Plains. Field Crops Research, 142, 1-8.
Mardani, A., & Taghavifar, H. (2016). An overview on energy inputs and environmental emissions of grape production in West Azerbayjan of Iran. Renewable and Sustainable Energy Reviews, 54, 918-924.
Ministry of Agriculture of Iran. (2018). Iran Agriculture Statistics. Retrieved from https://www.maj.ir/Dorsapax/userfiles/Sub65/Amarnamehj1-95-96-site.pdf.
Mohammadi-Barsari, A., Firouzi, S., & Aminpanah, H. (2016). Energy-use pattern and carbon footprint of rain-fed watermelon production in Iran. Information Processing in Agriculture, 3(2), 69-75.
Motamedolshariati, S. M., Sadrnia, H., Aghkhani, M. H., & Khojastehpour, M. (2017). Modelling of Greenhouse Gas Emissions from Wheat Production in Irrigated and Rain-Fed Systems in Khorasan Razavi Province, Iran. International Journal of Agricultural Management and Development, 7(1), 89-94.
Molaeei, K., & Afzalinia, S. (2012). Determination of energy indices in producing wheat and canola in Dashte Namdan Agro-industry (Eghlid region, Fars). Journal of Plant Ecophysiology, 4(1), 26-36 (In Persian).
Mondani, F., Aleagha, S., Khoramivafa, M., & Ghobadi, R. (2017). Evaluation of greenhouse gases emission based on energy consumption in wheat Agroecosystems. Energy Reports, 3, 37-45.
Nikkhah, A., Emadi, B., & Firouzi, S. (2015). Greenhouse gas emissions footprint of agricultural production in Guilan province of Iran. Sustainable Energy Technologies and Assessments, 12, 10-14.
Odum, H. T. (1996). Environmental accounting: emergy and environmental decision making (Vol. 707). New York: Wiley.
Odum, H.T., Brown M.T., & Brandt-Williams S., (2000). Introduction and global budget, Folio #1. Handbook of Emergy Evaluation. Center for Environmental Policy, University of Florida, Gainesville, USA.
Ohadi, N., Akbari, A., & Shahraki, J. (2015). Investigation of technical, allocative and economic efficiency of Pistachio producers in Sirjan. Agricultural Economics and Development, 23(89), 1-20 (In Persian).
Özilgen, M. (2018). Nutrition and production related energies and exergies of foods. Renewable and Sustainable Energy Reviews, 96, 275-295.
Özilgen, M., & Sorgüven, E. (2011). Energy and exergy utilization, and carbon dioxide emission in vegetable oil production. Energy, 36(10), 5954-5967.
Ozkan, B., Akcaoz, H., & Fert, C. (2004). Energy input–output analysis in Turkish agriculture. Renewable Energy, 29(1), 39-51.
Pari, L., Curt, M. D., Sánchez, J., & Santangelo, E. (2016). Economic and energy analysis of different systems for giant reed (Arundo donax L.) harvesting in Italy and Spain. Industrial Crops and Products, 84, 176-188.
Pelvan, E., & Özilgen, M. (2017). Assessment of energy and exergy efficiencies and renewability of black tea, instant tea and ice tea production and waste valorization processes. Sustainable Production and Consumption, 12, 59-77.
Pretty, J. (2007). Agricultural sustainability: concepts, principles and evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 447-465.
Rajabi, M., Soltani, A., Zeynali, E., & Soltani, E. (2012). Evaluation of energy use in wheat production in Gorgan. Journal of Plant Production, 19(3), 143-171 (In Persian).
Safa, M., Samarasinghe, S., & Mohssen, M. (2011). A field study of energy consumption in wheat production in Canterbury, New Zealand. Energy Conversion and Management, 52(7), 2526-2532.
Singh, H., Singh, A. K., Kushwaha, H. L., & Singh, A. (2007). Energy consumption pattern of wheat production in India. Energy, 32(10), 1848-1854.
Sorgüven, E., & Özilgen, M. (2012). Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process. Energy, 40(1), 214-225.
Strano, A., Stillitano, T., Montemurro, F., De Luca, A. I., Falcone, G., & Gulisano, G. (2019). Environmental and economic assessment of sustainability in Mediterranean wheat production. Agronomy Research, 7(1), 60-76.
Tabatabaeefar, A., Emamzadeh, H., Varnamkhasti, M. G., Rahimizadeh, R., & Karimi, M. (2009). Comparison of energy of tillage systems in wheat production. Energy, 34(1), 41-45.
Tahmasebi, M., Feike, T., Soltani, A., Ramroudi, M., & Ha, N. (2018). Trade-off between productivity and environmental sustainability in irrigated vs. rainfed wheat production in Iran. Journal of Cleaner Production, 174, 367-379.
Tajik, E., Nehbandani, A., Soltani, A., Zeinali, E., & Ajamnourouzi, H. (2013). Energy use in wheat production in Kordkoy region as influenced by seed-bed preparation and sowing methods. Journal of Plant Production, 20(3), 71-89 (In Persian).
Taki, M., Rohani, A., Soheili-Fard, F., & Abdeshahi, A. (2018a). Assessment of energy consumption and modeling of output energy for wheat production by neural network (MLP and RBF) and Gaussian process regression (GPR) models. Journal of Cleaner Production, 172, 3028-3041.
Taki, M., Soheili-Fard, F., Rohani, A., Chen, G., & Yildizhan, H. (2018b). Life cycle assessment to compare the environmental impacts of different wheat production systems. Journal of Cleaner Production, 197, 195-207.
United States Department of Agriculture (USDA). (2017). World Agricultural Production. Retrieved from http://usda.mannlib.cornell.edu.
Velten, S., Leventon, J., Jager, N., & Newig, J. (2015). What is sustainable agriculture? A systematic review. Sustainability, 7(6), 7833-7865.
Wang, X., Chen, Y., Sui, P., Gao, W., Qin, F., Zhang, J., & Wu, X. (2014). Emergy analysis of grain production systems on large-scale farms in the North China Plain based on LCA. Agricultural Systems, 128, 66-78.
Yildizhan, H. (2018). Energy, exergy utilization and CO2 emission of strawberry production in greenhouse and open field. Energy, 143, 417-423.
Yildizhan, H., & Taki, M. (2018). Assessment of tomato production process by cumulative exergy consumption approach in greenhouse and open field conditions: Case study of Turkey. Energy, 156, 401-408.
Yildizhan, H. (2019). Energy and exergy utilization of some agricultural crops in Turkey. Thermal Science, 23(2), 813-822.
Yildizhan, H., & Taki, M. (2019). Sustainable management and conservation of resources for different wheat production processes; cumulative exergy consumption approach. International Journal of Exergy, 28(4), 404-422.