Effect of mycorrhiza on morphological characteristics and nutrients content of barley under different salinity levels
Subject Areas :
Agroecology Journal
Mojtaba Yousefi Rad
1
,
ghorban Noormohammadi
2
,
mohammadreza Ardakani
3
,
eslam Majidi Hervan
4
,
seyedjavad Mirhadi
5
1 - Ph.D. student in Agronomy, Islamic Azad University of Tehran, Science and Research Branch.
2 - Professor of Islamic Azad University of Tehran, Science and Research Branch.
3 - Assistant Professor of Islamic Azad University, Karaj Branch.
4 - Scientific Board of Islamic Azad University of Tehran, Science and Research Branch.
5 - Scientific Board of Islamic Azad University of Tehran, Science and Research Branch.
Received: 2008-07-14
Accepted : 2009-08-17
Published : 2010-01-21
Keywords:
Morphological Characteristics,
barley,
Tolerance,
mycorrhizal fungus,
Salinlty stress,
Nutrients content,
Abstract :
Mycorrhizal fungus can increase plants tolerance to stress. To study the effect of the application of mycorrhizal fungus on morphological characters and nutrients contents of Karon dar Kavir barley, Hordeum vulgare, cultivar, an experiment was conducted as a factorial based on randomized complete block design by two factors in greenhouse of research farm of Islamic Azad university, Saveh branch during 2006-2007. First factor was applying of mycorrhizal fungus, Glomus interaradices, or not and the second factor was salinity levels. Plants were grown in five Kg. capacity pots under 0.6, 8 and 13 ds/m NaCl salinity conditions in the greenhouse. Salinity decreased root and shoot dry matter, shoot fresh weight, plant height, length of spike, number of tillers and number of leaves in a plant, but did not have significant effect on number of leaves per stem. Mycorrhiza inoculation increased all characters, excpect number of leaves per stem in stress and non stress conditions. Mycorrhizal fungus increased barley tolerance index especially in higher salinity conditions and plants showed higher mycorrhizal dependency in salinity conditions. Inoculated plants also showed higher nutrients content in all conditions than non-inoculated plants. More tolerance of inoculated plants to stress can be a result of their higher nutrients content in comparison with non-inoculated plants.
References:
1- برین، م.، علی اصغرزاده، ن.، صمدی، ع. 1385. اثر شوری حاصل از کلرید سدیم و مخلوط املاح بر غلظت پرولین و برخی شاخصهای رشد گوجهفرنگی در همزیستی با قارچ میکوریز آربسکولار. مجله علوم کشاورزی ایران، جلد 37، شماره1. ص. 147-139.
2- کافی، م. ع. و مهدوی دامغانی، م. 1381. مکانیسمهای مقاومت گیاهان به تنشهای محیطی. انتشارات دانشگاه فردوسی مشهد، 467 ص.
3- ملکوتی، م. ج . 1378. کشاورزی پایدار و افزایش عملکرد با بهینهسازی مصرف کود در ایران. نشر آموزش کشاورزی (دفتر خدمات و تکنولوژی آموزش)، 460 ص.
4- هانی، ع. 1381. بررسی اثر مشخصات مرفولوژیکی ریشه گیاه شبدر و سطوح فسفر بر شدت تمایل میکوریزایی گیاه، جذب فسفر و رشد گیاه کلنی شده با قارچ VAM. پایاننامه کارشناسی ارشد دانشگاه چمران اهواز، 109 صفحه.
5- همایی، م. 1381. واکنش گیاهان به شوری. کمیته ملی آبیاری و زهکشی ایران، 120 ص.
6- یوسفیراد، م. 1376. اثرات شوری بر محتوای نیتروژن گیاه در مراحل مختلف رشد گندم. پایاننامه کارشناسی ارشد، دانشگاه تهران، 160 ص.
Al-Karaki, G. 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza. 10:51-54.
Al-Karaki, G., and Hammad, N. R. 2001. Mycorrhizal influence on fruit yield and mineral content of tomato grown under salt stress. Journal of Plant Nutration 24(8): 1311-1323.
Apse, M. P. G., Dharon, S., Snelden, W. A., and Bumerold, E. 1999. Salt tolerance conferred by over expression of a vascoular Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258.
Ben Khaled, L., Gomes, A. M., Ouarraqi, E. M., and Oihabi, A. 2003. Physiology and biochemical resposes to salt stress of mycorrhizal and/or nodulated clover seedling (Trifolium alexandrinum L). Agronomy 23: 571-580.
Eugene,V. M., Scott, M. L., Francois, L. E., and Griere, C. M. 1994. Tiller development in salt – stressed wheat. Crop Science 34: 1594-1603.
Esch, H., Hundeshagen, B., Schneiderpoetsch, H., and Bothe, H. 1994. Demonstration of abscisic acid in spores and hyphae of the arbuscular mycorrhizal fungus Glomus and in the Nz-fixing cyanobacterium Anabaena variabilis. Plant Science 99: 9-16.
Feng, G., Zhang, F. S., Li, X. L., Tian, C. Y., and Rengel, Z. 2002. Improved tolerace of maize plants to salt stress by arbuscular mycorrhizal is related to higher accumulation of soluble sugars in root. Mycorrhiza 12: 185-190.
Feng, G., Li, X. L., Zhang, F. S., and Li, S. X. 2000. Effect of phosphorus and arbuscular mycorrhizal fungus on response of maize plant to saline environment. Plant Resource Environment 9: 22-26.
Gerdemann, J. W. 1975. Vesicular arboscular mycorrhizal. In: Torry, D., and Clarkson, D.T.C. (Eds.): The development and function of roots. Academic press, London, Pp. 572-591.
Ghulam Hussein, A. L., and Jaloud, A. 1997. Effects of saline irrigation on germination and growth parameters of berley (Hordeum vulgare) in a pot experiment. King Abdolaziz city for Science Technology, Sudi Arabia, Euphytica 130: 307-318.
Gianinazzi Pearson, V., Vermo, D. P. S., and John, T. H. 1984. Host fungus specificity in mycorrhiza. In: Verma, D. P. S., and Hohn, T. H. (Eds.): Genes involved in plant-microb interactions. Springer Vienna, Pp. 225-253.
Giri, B., and Mukerji, K. G. 2004. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptica and Sesbania gradiflora under field condition: evidenced for reduced sodium and improved magnesium uptake. Mycorrhizal 14: 307-312.
Giri, B., koopar, R., and Mukerji, K. J. 2005. Effect of the arbuscular mycorrhizae Glomus fasciculatum and G. macrocarpum on the growth and nutrient content of Cassia siamea in a semi-arid Indian wasteland soil. New Forests. 29: 63-73.
Gupta, N., and Rutaray, S. 2005. Growth and development of AM fungi and maize under salt and acid stress. Acta Agricultural Scandinavia, Section B, Soil and Plant Science 55: 151-157.
Hirrel, M. C., and Gerdemann, J. W. 1980. Improved growth of onion and dell pepper in saline soils by two vesicular- arbuscular Mycorrhizal fungi. Journal of Soil Science Society of America 44: 654-655.
Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., and Barea, J. B. 2003. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology of Fertile Soils 37: 1-16.
Mashhady, A. S., Heakal, M. H., Abdul-Aziz, A., and Sayed, H. T. 1985. Nutrition effects of non-stready soil salinity on a salt- tolerant wheat cultivar. Plant and Soil Science 83: 223-231.
Mohammad, M. J., Malkawi, H. I., and Shibli, R. 2003. Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salt. Journal of Plant Nutrition 26(1): 125-137.
Netondo, G. F., Onyango, J. C., and Beck, E. 2004. Crop physiology and metabolism. Sorghoum and salinity: I. Response of growth, water relation and ion accumulation to Nacl salinity, Crop Society of America 44: 797-805.
Ojala, J. C., Jaryell, W. M., and Menge, A. 1983. Infuence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agronomy Journal 75: 225-259.
Pessarakli, M., and Tuker, T. C. 1988. Dry matter yield and nitrogen–15 uptakes by tomatoes under sodium cholorid stress. Journal of Soil Science Society of America 52: 698-700.
Prasad, M. N. V. 1997. Plant ecophysiology. John Wily and Sons. Inc.
Rabie, G. H., and Almadini, A. M. 2005. Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. African Journal of Biotecnology 4(3): 210-222.
Rao, A.V., and Tak, R. 2002. Growth of different tree species and their nutrient uptake in limestone mine spoil as influenced by arbuscular mycorrhizal (AM) fungi in India arid zones. Journal of Arid Environment 51: 113-119.
Ruiz- Lozano, J. M., Azcon, R., and Gomes, M. 1996. Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants. Physiology Plant 98: 767-772.
Saleh, M., and Al-Garni, S. 2006. Increased heavy metal tolerance of cowpea plant by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium. African Journal of Biotechnology 5(2): 133-142.
Singh, R. P., Choudhary, A., Gulati, A., Dahiya, H. C., Jaiwal, P. K., and Sengar, R. S. 1997. Response of plants to salinity in interaction with other abiotic factors. In: Jawial, P. K., Singh, R. P., and Gulati, A. (eds.): Strategies for improving salt tolerance in higher plants. Science Publishers, En. Field, N. H., Pp. 25-39.
Schreiner, P. R. 2007. Effects of native and non native arbuscular mycorrhizal fungi on growth and nutrient uptake of piontnoir (Vitis vinifera L) in two soils with contrasting levels of phosphorus. Applied Soil Ecology 36: 205-215.
Staple, R. C., and Toenniessen, G. H. 1984. Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, 182 Pp.
_||_