Deep eutectic solvents: Emerging green solvents
Subject Areas : Environment, economy, engineering, urban planning and sustainable development
1 - Materials Engineering Faculty, Advanced Material Research Centre, Sahand University of Technology, Tabriz, Iran
Keywords: Solvent, Deep eutectic, Green solvent, Sustainable development,
Abstract :
Sustainable development and the growth of green industries require the adoption of new solvents to replace traditional ones. Conventional solvents are known to be toxic and volatile and pose significant environmental challenges. In recent years, scientists around the world have extensively investigated deep eutectic solvents. This article aims to provide an overview of the history and use of deep eutectic solvents based on published literature in this field. Deep eutectic solvents consist of two or three inexpensive and safe components that are combined to form a eutectic solution with a lower melting temperature than each individual component. Consequently, these solvents typically remain liquid at temperatures below 100°C. Deep eutectic solvents exhibit similar behavior and physicochemical properties to ionic solutions but are more cost-effective and biocompatible. Due to their numerous advantages, extensive studies have been conducted on their preparation, synthesis, as well as their physical and chemical properties. Furthermore, deep eutectic solvents are being investigated for various applications, and their use in fields, such as nanoparticle synthesis, electropolishing, electrodeposition, and metal extraction, is rapidly increasing. Overall, the adoption of deep eutectic solvents offers significant potential for sustainable development and green industry applications due to their favorable properties compared to conventional solvents. Ongoing research continues to expand our understanding of these solvents and explore their diverse applications in various fields.
[1] Kumar, J.A., Krithiga, T., Manigandan, S., Sathish, S., Renita, A.A., Prakash, P., Prasad, B.S.N., Kumar, T.R.P., Rajasimman, M., Hosseini-Bandegharaei, A., Prabu, D., Crispin, S., 2021, A focus to green synthesis of metal/metal based oxide nanoparticles: Various mechanisms and applications towards ecological approach, Journal of Cleaner Production, 324, 129198.
[2] Ryu, U., Jee, S., Rao, P.C., Shin, J., Ko, C., Yoon, M., Park, K.S., Choi, K.M., 2021, Recent advances in process engineering and upcoming applications of metal–organic frameworks, Coordination Chemistry Reviews, 426, 213544.
[3] Reichardt, C., 2007, Solvents and solvent effects: An introduction. Organic Process Research & Development, 11, 105.
[4] Messerle, B.A., Wider, G., Otting, G., Weber, C., Wuthrich, K., 1989, Solvent suppression using a spin lock in 2D and 3D NMR spectroscopy with H2O solutions, Journal of Magnetic Resonance, 85, 608.
[5] Del Valle, E.M.M., 2004, Cyclodextrins and their uses: a review, Process Biochemistry, 39, 1033.
[6] Yu, D., Xue, Z., Mu, T., 2022, Deep eutectic solvents as a green toolbox for synthesis, Cell Reports Physical Science. 3, 100809.
[7] Reichardt, C., Welton, T., 2011, Solvents and solvent effects in organic chemistry, Fourth Edition, John Wiley & Sons, pp. 1-7.
[8] Scopus Database. Available at: https:// www.scopus.com.
[9] Abbott, A.P., Capper, G., Davies, D.L., Munro, H.L., Rasheed, R.K., Tambyrajah, V., 2001, Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains, Chemical Communications, 19, 2010.
[10] Perna, F.M., Vitale, P., Capriati, V., 2020, Deep eutectic solvents and their applications as green solvents, Current Opinion in Green and Sustainable Chemistry, 21, 27.
[11] Tang, B., Row, K.H., 2013, Recent developments in deep eutectic solvents in chemical sciences, Monatshefte für Chemie-Chemical Monthly, 144, 1427.
[12] Dai, Y., van Spronsen, J., Witkamp, G-J., Verpoorte, R., Choi, Y.H., 2013, Natural deep eutectic solvents as new potential media for green technology, Analytica Chimica Acta, 766, 61.
[13] Tomé, L.I.N., Baião, V., da Silva, W., Brett, C.M.A., 2018, Deep eutectic solvents for the production and application of new materials, Applied Materials Today, 10, 30.
[14] Liu, Y., Friesen, J.B., McAlpine, J.B., Lankin, D.C., Chen, S.-N., Pauli, G.F., 2018, Natural deep eutectic solvents: properties, applications, and perspectives, Journal of Natural Products, 81, 679.
[15] Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R.L., Duarte, A.R.C., 2014, Natural deep eutectic solvents – Solvents for the 21st century, ACS Sustainable Chemistry & Engineering, 2, 1063.
[16] El Achkar, T., Greige-Gerges, H., Fourmentin, S., 2021, Basics and properties of deep eutectic solvents: a review, Environmental chemistry letters, 19, 3397.
[17] Hansen, B.B., Spittle, S., Chen, B., Poe, D., Zhang, Y., Klein, J.M., Horton, A., Adhikari, L., Zelovich, T., Doherty, B.W., 2020, Deep eutectic solvents: A review of fundamentals and applications, Chemical Reviews, 121, 1232.
[18] Smith, E.L., Abbott, A.P., Ryder, K.S., 2014, Deep eutectic solvents (DESs) and their applications, Chemical Reviews, 114, 11060.
[19] Liao, H.G., Jiang, Y.X., Zhou, Z.Y., Chen, S.P., Sun, S.G., 2008, Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis, Angewandte Chemie International Edition, 47, 9100.
[20] Wei, L., Fan, Y.-J., Tian, N., Zhou, Z.-Y., Zhao, X.-Q., Mao, B.-W., Sun, S.-G., 2012, Electrochemically shape-controlled synthesis in deep eutectic solvents: A new route to prepare Pt nanocrystals enclosed by high-index facets with high catalytic activity, The Journal of Physical Chemistry C, 116, 2040.
[21] Mohan, S., Kanagaraj, D., Sindhuja, R., Vijayalakshmi, S., Renganathan, N.G., 2001, Electropolishing of stainless steel-a review, Transactions of the IMF, 79, 140.
[22] Abbott, A.P., Capper, G., McKenzie, K.J., Ryder, K.S., 2006, Voltammetric and impedance studies of the electropolishing of type 316 stainless steel in a choline chloride based ionic liquid, Electrochimica Acta, 51, 4420.
[23] Karim, W.O., Abbott, A.P., Cihangir, S., Ryder, K.S., 2018, Electropolishing of nickel and cobalt in deep eutectic solvents, Transactions of the IMF, 96, 200.
[24] Abbott, A.P., Dsouza, N., Withey, P., Ryder, K.S., 2012, Electrolytic processing of superalloy aerospace castings using choline chloride-based ionic liquids, Transactions of the IMF, 90, 9.
[25] Abbott, A.P., Capper, G., McKenzie, K.J., Glidle, A., Ryder, K.S., 2006, Electropolishing of stainless steels in a choline chloride based ionic liquid: an electrochemical study with surface characterisation using SEM and atomic force microscopy, Physical Chemistry Chemical Physics, 8, 4214.
[26] Smith, E.L., 2013, Deep eutectic solvents (DESs) and the metal finishing industry: where are they now?, Transactions of the IMF, 91, 241.
[27] Popescu, A.-M.J., Constantin, V., Olteanu, M., Demidenko, O., Yanushkevich, K., 2011, Obtaining and structural characterization of the electrodeposited metallic copper from ionic liquids, Revista de Chimie, 62, 626.
[28] Abbott, A.P., El Ttaib, K., Ryder, K.S., Smith, E.L., 2008, Electrodeposition of nickel using eutectic based ionic liquids, Transactions of the IMF, 86, 234.
[29] Dutra, A.J.B., Paiva, P.R.P., Tavares, L.M., 2006, Alkaline leaching of zinc from electric arc furnace steel dust, Minerals Engineering, 19, 478.
[30] Oustadakis, P., Tsakiridis, P.E., Katsiapi, A., Agatzini-Leonardou, S., 2010, Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): Part I: Characterization and leaching by diluted sulphuric acid, Journal of Hazardous Materials, 179, 1.
[31] Youcai, Z., Stanforth, R., 2000, Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium, Journal of Hazardous Materials, 80, 223.
[32] Li, H., Wang, Y., Cang, D., 2010, Zinc leaching from electric arc furnace dust in alkaline medium, Journal of Central South University of Technology, 17, 967.
[33] Abbott, A.P., Collins, J., Dalrymple, I., Harris, R.C., Mistry, R., Qiu, F., Scheirer, J., Wise, W.R., 2009, Processing of electric arc furnace dust using deep eutectic solvents, Australian Journal of Chemistry, 62, 341.