Some properties of nilpotent Lie algebras
Subject Areas : StatisticsM.R. Rismanchian 1 , M. Araskhan 2
1 - Department of Pure Mathematics, Faculty of Mathematical Sciences, Shahrekord University, Shahrekord, Iran.
2 - Department of Mathematic, Yazd - Branch, Islamic Azad University, Yazd, Iran
Keywords: مرکز جبرلی, سری مرکزی, ایدهآل کمین, موضعاً پوچ توان,
Abstract :
In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.
[1] M. Araskhan and M. R. Rismanchian, Dimension of the c-nilpotent multiplier of Lie algebras Proc. Indian Acad. Sci. 126(3) (2016) 353–357.
[2] P. Hardy, On characterizing nilpotent Lie algebras by their multipliers III, Comm. Algebra 33 (2005) 4205–4210.
[3] M. R. Rismanchian and M. Araskhan, Some inequalities for the dimension of the Schur multiplier of a pair of (nilpotent) Lie Algebras, J. Algebra 352 (2012) 173–179.
[4] M. R. Rismanchian, M. Molavi and M. Araskhan, On dimension and homological methods of the (higher) Schur multiplier of a pair of Lie algebras, Comm. Algebra 45(11) (2017) 4707-4716.
[5] W. A. de Graaf, Lie algebras: Theory and algorithms, Elsevier, Amsterdam, New York, 2000.
[6] A. I. Malcev, On a general method for obtaining local theorems in group theory, Ivanov. Gos. Ped. Inst. Ucen. Zap. 1 (1941) 3-9.
[7] D. H. Mclain, On locally nilpotent groups, Proc. Cambridge Philos. Soc. 52 (1956) 5-11
[8] J. A. Hulse and J. C. Lennox, Marginal series in groups, Proc. Roy. Soc. Edinburgh 76A (1976) 139-154.
[9] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, Pt 1. Springer-Verlag, Berlin, New York, 1972.
[10] N. S. Hekster, On the structure of n-isoclinism classes of groups, J. Pure Appl. Algebra 40 (1986) 63-85.
[11] H. Neumann, Varieties of groups, Springer-Verlag, Berlin, 1967.
[12] M. R. Rismanchian, -nilpotent groups and 5-term exact sequence, Comm. Algebra 42 (2014) 1559-1564.