The Application of As-Synthesized Silver-Doped Anatase TiO2 Nanoparticle onto the Surface of Fe-ZSM-5 Zeolite for the Degradation of Organic Dye with UV Light
Subject Areas : Environment Pullotion (water and wastewater)Nasrin aghajari 1 , zahra ghasemi 2 , habub younesi 3 , Nader bahramifar 4
1 - M.Sc. Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, Noor.
2 - Assistant Professor, Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas * (Corresponding Author)
3 - Professor, Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, Noor
4 - Assistant of Professor, Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, Noor
Keywords: reactive red 195 dye, Zeolite Fe-ZSM5, TiO2, Ag-doped photocatalytic,
Abstract :
Background and Objective: The discharge of dying wastewater effluent from the textile industry into the water body can be toxic due to their long time presence in the environment and is the leading major cause of the environmental damage. It is difficult to remove color from dye effluents with conventional wastewater treatment methods. Then advanced oxidation processes (AOPs) are potentially powerful method to remove these organic contaminations. Method: In the present study the photocatalytic performance of the silver-doped titanium dioxide (TiO2) nanoparticles over the surface of Fe-ZSM-5 zeolite was investigated trough the degradation of reactive red 195 dyes in water under light UV. The Effects of different titanium dioxide to Fe-ZSM-5 ratio, dye concentration, photocatalyst concentration and pH of the water solution was studied at room temperature. Findings: The EDX analysis, a semiquantitative elemental analysis of the surface which indicates that Ti and silver (Ag) was successfully loaded on the surface of Fe-ZSM-5 zeolite. The result of EDX shows that the mean weight percentage of Si, Fe, Ti and Ag was 19.98, 5.48, 56.95 and 15.65%, respectively. The SEM images showed that unloaded Fe-ZSM-5 zeolite has a well-defined cubic shape and tends to change a spherical regular morphology and a uniform nanoparticle of TiO2 and Ag with spherical shape distributed onto Ag-TiO2/Fe-ZSM-5 photocatalyst. The XRD analysis approved the formation of the Fe-ZSM-5 and anatase TiO2 nanoparticles and Ag-doped onto surface of the Fe-ZSM-5 photocatalyst. Discussion and Conclusion: The results revealed that photocatalytic removal efficiency of Fe-ZSM-5 with Ag-doped TiO2 was significantly influenced by the solution pH. It decreased as the solution pH increased. The best performance of Ag-TiO2/Fe-ZSM-5 photocatalyst in removal of Reactive 195 (100%) was achieved at pH 3, 300 mg/L photocatalyst dose, 50 mg/L dye concentration, 75 min contact time and Ag-TiO2 with the ratio of 1. However, a minimum of dye removal efficiency of 32% was obtaimed at pH 9 under aforementioned condition. The reusability of the photocatalyst was still significant after seven times repeated cycles.
- Yagub, M. T., Sen, T. K., Afroze, S., Ang, H. M., 2014. Dye and its Removal from aqueous solution by adsorption: a review. Advances Adsorption in colloid and interface science, Vol. 209, pp. 172-184
- Arslan, I., Balcioǧlu, I. A., Bahnemann, D. W., 2000. Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO 2/UV-A processes. Dyes and pigments, Vol. 47, pp. 207-218
- Sauer, T., Neto, G. C., Jose, H. J., Moreira, R. F. P. M., 2002. Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. Journal of Photochemistry and Photobiology A: Chemistry, Vol. 149, pp. 147-154
- Maleki, A., Mahvi, A. H., Shahmoradi, B., 2011. Hydroxyl radical-based processes for decolourization of direct blue 71: A comparative study. Asian Journal of Chemistry, Vol. 23, pp. 4411-4415
- Padmanabhan, P. V. A., Sreekumar, K. P., Thiyagarajan, T. K., Satpute, R. U., Bhanumurthy, K., Sengupta, P., Warrier, K. G. K., 2006. Nano-crystalline titanium dioxide formed by reactive plasma synthesis. Vacuum, Vol. 80, pp. 1252-1255
- Alaton, I. A., Balcioglu, I. A., Bahnemann, D. W. 2002. Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Research, Vol. 36, pp. 1143-1154
- Corma, A., Garcia, H., 2004. Zeolite-based photocatalysts. Chemical communications, Vol. 13, pp. 1443-1459
- Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., Gernjak, W., 2009. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catalysis Today, Vol. 147, pp.1-59
- Mahmoodi, N. M., Arami, M., Limaee, N. Y., Tabrizi, N. S., 2006. Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO 2 photocatalytic reactor. Journal of colloid and interface Science, Vol. 295, pp. 159-164
- Pirkarami, A., Olya, M. E., Farshid, S. R., 2014. UV/Ni–TiO2 nanocatalyst for electrochemical removal of dyes considering operating costs. Water Resources and Industry, Vol. 5, pp. 9-20
- Konstantinou, I. K., Albanis, T. A., 2004. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Applied Catalysis B: Environmental, Vol. 49, pp. 1-14
- Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Entezari, M. H., 2012. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, Vol. 125, pp. 331-349
- Stamate, M.,Lazar, G., 2007. Application of titanium dioxide photocatalysis to create self-cleaning materials. Modeling and Optimization in the Machines Building Field (MOCM), Vol. 13, pp. 280-285
- Noorjahan, M., Kumari, V. D., Subrahmanyam, M., Boule, P., 2004. A novel and efficient photocatalyst: TiO2-HZSM-5 combinate thin film. Applied Catalysis B: Environmental, Vol. 47, pp. 209-213
- Bouvy, C., Marine, W., Sporken, R., Su, B. L., 2006. Photoluminescence properties and quantum size effect of ZnO nanoparticles confined inside a faujasite X zeolite matrix. Chemical physics letters, Vol. 428, pp. 312-316
- Durgakumari, V., Subrahmanyam, M., Rao, K. S., Ratnamala, A., Noorjahan, M., Tanaka, K., 2002. An easy and efficient use of TiO2 supported HZSM-5 and TiO2+ HZSM-5 zeolite combinate in the photodegradation of aqueous phenol and p-chlorophenol. Applied Catalysis A: General, Vol. 234, pp. 155-165
- Vempati, R. K., Borade, R., Hegde, R. S., Komarneni, S., 2006. Template free ZSM-5 from siliceous rice hull ash with varying C contents. Microporous and Mesoporous Materials, Vol. 93, pp. 134-140
- Divakar, D., Romero-Sáez, M., Pereda-Ayo, B., Aranzabal, A., González-Marcos, J. A., González-Velasco, J. R., 2011. Catalytic oxidation of trichloroethylene over Fe-zeolites. Catalysis today, Vol. 176, pp. 357-360
- Chi, Y., Yuan, Q., Li, Y., Zhao, L., Li, N., Li, X., Yan, W., 2013. Magnetically separable Fe3O4@ SiO2@ TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity. Journal of hazardous materials, Vol. 262, pp. 404-411
- van Grieken, R., Marugán, J., Sordo, C., Martínez, P., Pablos, C., 2009. Photocatalytic inactivation of bacteria in water using suspended and immobilized silver-TiO2. Applied Catalysis B: Environmental, Vol. 93, pp. 112-118
- Huang, X., Wang, G., Yang, M., Guo, W., Gao, H., 2011. Synthesis of polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres and their photocatalytic application. Materials Letters, Vol. 65, pp. 2887-2890
- Brückner, A., Lück, R., Wieker, W., Fahlke, B., Mehner, H., 1992. Epr study on the incorporation of Fe (III) ions in ZSM-5 zelites in dependence on the preparation conditions. Zeolites, Vol. 12, pp. 380-385
- Huang, M., Xu, C., Wu, Z., Huang, Y., Lin, J., Wu, J., 2008. Photocatalytic discolorization of methyl orange solution by Pt modified TiO 2 loaded on natural zeolite. Dyes and Pigments, Vol. 77, pp. 327-334
- Wang, C., Shi, H., Li, Y., 2011. Synthesis and characteristics of natural zeolite supported Fe3+-TiO2 photocatalysts. Applied Surface Science, Vol. 257, pp. 6873-6877
- Fujishima, A., Zhang, X., Tryk, D. A., 2008. TiO2 photocatalysis and related surface phenomena. Surface Science Reports, Vol. 63, pp. 515-582
- Ghasemi, Z., Younesi, H., Zinatizadeh, A. A., 2016. Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum. Chemosphere, Vol. 159, pp. 552-564
- Mahesh, K. P. O., Kuo, D. H., Huang, B. R., 2015. Facile synthesis of heterostructured Ag-deposited SiO2@TiO2 composite spheres with enhanced catalytic activity towards the photodegradation of AB 1 dye. Journal of Molecular Catalysis A: Chemical, Vol. 396, pp. 290-296
- Chong, M. N., Jin, B., Chow, C. W., Saint, C., 2010. Recent developments in photocatalytic water treatment technology: a review. Water research, Vol. 44, pp. 2997-3027
- Phu, N. H., Hoa, T. T. K., Van Tan, N., Thang, H. V., Le Ha, P., 2001. Characterization and activity of Fe-ZSM-5 catalysts for the total oxidation of phenol in aqueous solutions. Applied Catalysis B: Environmental, Vol. 34, pp. 267-275
- Xue, C. H., Chen, J., Yin, W., Jia, S. T., Ma, J. Z., 2012. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Applied Surface Science, Vol. 258, pp. 2468-2472
- Ghasemi, Z., Younesi, H., Zinatizadeh, A. A., 2016. Kinetics and thermodynamics of photocatalytic degradation of organic pollutants in petroleum refinery wastewater over nano-TiO2 supported on Fe-ZSM-5. Journal of the Taiwan Institute of Chemical Engineers. Vol. 65, pp. 357-366
- Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R., Hashib, M. A., 2010. Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination, Vol. 261, pp. 3-18
- Rengaraj, S., Li, X. Z., 2007. Enhanced photocatalytic reduction reaction over Bi3+–TiO2 nanoparticles in presence of formic acid as a hole scavenger. Chemosphere, Vol. 66, pp. 930-938
- Ranjit KT, Viswanathan B., 1997. Photocatalytic reduction of nitrite and nitrate ions to ammonia on M/TiO2 catalysts. Journal of Photochemistry and Photobiology A: Chemistry, Vol. 108, pp. 73-78
_||_
- Yagub, M. T., Sen, T. K., Afroze, S., Ang, H. M., 2014. Dye and its Removal from aqueous solution by adsorption: a review. Advances Adsorption in colloid and interface science, Vol. 209, pp. 172-184
- Arslan, I., Balcioǧlu, I. A., Bahnemann, D. W., 2000. Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO 2/UV-A processes. Dyes and pigments, Vol. 47, pp. 207-218
- Sauer, T., Neto, G. C., Jose, H. J., Moreira, R. F. P. M., 2002. Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. Journal of Photochemistry and Photobiology A: Chemistry, Vol. 149, pp. 147-154
- Maleki, A., Mahvi, A. H., Shahmoradi, B., 2011. Hydroxyl radical-based processes for decolourization of direct blue 71: A comparative study. Asian Journal of Chemistry, Vol. 23, pp. 4411-4415
- Padmanabhan, P. V. A., Sreekumar, K. P., Thiyagarajan, T. K., Satpute, R. U., Bhanumurthy, K., Sengupta, P., Warrier, K. G. K., 2006. Nano-crystalline titanium dioxide formed by reactive plasma synthesis. Vacuum, Vol. 80, pp. 1252-1255
- Alaton, I. A., Balcioglu, I. A., Bahnemann, D. W. 2002. Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Research, Vol. 36, pp. 1143-1154
- Corma, A., Garcia, H., 2004. Zeolite-based photocatalysts. Chemical communications, Vol. 13, pp. 1443-1459
- Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., Gernjak, W., 2009. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catalysis Today, Vol. 147, pp.1-59
- Mahmoodi, N. M., Arami, M., Limaee, N. Y., Tabrizi, N. S., 2006. Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO 2 photocatalytic reactor. Journal of colloid and interface Science, Vol. 295, pp. 159-164
- Pirkarami, A., Olya, M. E., Farshid, S. R., 2014. UV/Ni–TiO2 nanocatalyst for electrochemical removal of dyes considering operating costs. Water Resources and Industry, Vol. 5, pp. 9-20
- Konstantinou, I. K., Albanis, T. A., 2004. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Applied Catalysis B: Environmental, Vol. 49, pp. 1-14
- Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Entezari, M. H., 2012. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, Vol. 125, pp. 331-349
- Stamate, M.,Lazar, G., 2007. Application of titanium dioxide photocatalysis to create self-cleaning materials. Modeling and Optimization in the Machines Building Field (MOCM), Vol. 13, pp. 280-285
- Noorjahan, M., Kumari, V. D., Subrahmanyam, M., Boule, P., 2004. A novel and efficient photocatalyst: TiO2-HZSM-5 combinate thin film. Applied Catalysis B: Environmental, Vol. 47, pp. 209-213
- Bouvy, C., Marine, W., Sporken, R., Su, B. L., 2006. Photoluminescence properties and quantum size effect of ZnO nanoparticles confined inside a faujasite X zeolite matrix. Chemical physics letters, Vol. 428, pp. 312-316
- Durgakumari, V., Subrahmanyam, M., Rao, K. S., Ratnamala, A., Noorjahan, M., Tanaka, K., 2002. An easy and efficient use of TiO2 supported HZSM-5 and TiO2+ HZSM-5 zeolite combinate in the photodegradation of aqueous phenol and p-chlorophenol. Applied Catalysis A: General, Vol. 234, pp. 155-165
- Vempati, R. K., Borade, R., Hegde, R. S., Komarneni, S., 2006. Template free ZSM-5 from siliceous rice hull ash with varying C contents. Microporous and Mesoporous Materials, Vol. 93, pp. 134-140
- Divakar, D., Romero-Sáez, M., Pereda-Ayo, B., Aranzabal, A., González-Marcos, J. A., González-Velasco, J. R., 2011. Catalytic oxidation of trichloroethylene over Fe-zeolites. Catalysis today, Vol. 176, pp. 357-360
- Chi, Y., Yuan, Q., Li, Y., Zhao, L., Li, N., Li, X., Yan, W., 2013. Magnetically separable Fe3O4@ SiO2@ TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity. Journal of hazardous materials, Vol. 262, pp. 404-411
- van Grieken, R., Marugán, J., Sordo, C., Martínez, P., Pablos, C., 2009. Photocatalytic inactivation of bacteria in water using suspended and immobilized silver-TiO2. Applied Catalysis B: Environmental, Vol. 93, pp. 112-118
- Huang, X., Wang, G., Yang, M., Guo, W., Gao, H., 2011. Synthesis of polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres and their photocatalytic application. Materials Letters, Vol. 65, pp. 2887-2890
- Brückner, A., Lück, R., Wieker, W., Fahlke, B., Mehner, H., 1992. Epr study on the incorporation of Fe (III) ions in ZSM-5 zelites in dependence on the preparation conditions. Zeolites, Vol. 12, pp. 380-385
- Huang, M., Xu, C., Wu, Z., Huang, Y., Lin, J., Wu, J., 2008. Photocatalytic discolorization of methyl orange solution by Pt modified TiO 2 loaded on natural zeolite. Dyes and Pigments, Vol. 77, pp. 327-334
- Wang, C., Shi, H., Li, Y., 2011. Synthesis and characteristics of natural zeolite supported Fe3+-TiO2 photocatalysts. Applied Surface Science, Vol. 257, pp. 6873-6877
- Fujishima, A., Zhang, X., Tryk, D. A., 2008. TiO2 photocatalysis and related surface phenomena. Surface Science Reports, Vol. 63, pp. 515-582
- Ghasemi, Z., Younesi, H., Zinatizadeh, A. A., 2016. Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum. Chemosphere, Vol. 159, pp. 552-564
- Mahesh, K. P. O., Kuo, D. H., Huang, B. R., 2015. Facile synthesis of heterostructured Ag-deposited SiO2@TiO2 composite spheres with enhanced catalytic activity towards the photodegradation of AB 1 dye. Journal of Molecular Catalysis A: Chemical, Vol. 396, pp. 290-296
- Chong, M. N., Jin, B., Chow, C. W., Saint, C., 2010. Recent developments in photocatalytic water treatment technology: a review. Water research, Vol. 44, pp. 2997-3027
- Phu, N. H., Hoa, T. T. K., Van Tan, N., Thang, H. V., Le Ha, P., 2001. Characterization and activity of Fe-ZSM-5 catalysts for the total oxidation of phenol in aqueous solutions. Applied Catalysis B: Environmental, Vol. 34, pp. 267-275
- Xue, C. H., Chen, J., Yin, W., Jia, S. T., Ma, J. Z., 2012. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Applied Surface Science, Vol. 258, pp. 2468-2472
- Ghasemi, Z., Younesi, H., Zinatizadeh, A. A., 2016. Kinetics and thermodynamics of photocatalytic degradation of organic pollutants in petroleum refinery wastewater over nano-TiO2 supported on Fe-ZSM-5. Journal of the Taiwan Institute of Chemical Engineers. Vol. 65, pp. 357-366
- Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R., Hashib, M. A., 2010. Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination, Vol. 261, pp. 3-18
- Rengaraj, S., Li, X. Z., 2007. Enhanced photocatalytic reduction reaction over Bi3+–TiO2 nanoparticles in presence of formic acid as a hole scavenger. Chemosphere, Vol. 66, pp. 930-938
- Ranjit KT, Viswanathan B., 1997. Photocatalytic reduction of nitrite and nitrate ions to ammonia on M/TiO2 catalysts. Journal of Photochemistry and Photobiology A: Chemistry, Vol. 108, pp. 73-78