استفاده از نقره دوپ شده با نانو ذرات آناتاز TiO2 بر روی سطح زئولیت Fe-ZSM-5 برای حذف رنگ آلی تحت نور UV
محورهای موضوعی : آلودگی محیط زیست (آب و فاضلاب)نسرین آقاجری 1 , زهرا قاسمی 2 , حبیب اله یونسی 3 , نادر بهرامی فر 4
1 - کارشناسی ارشد، گروه محیط زیست، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، ایران
2 - استادیار گروه شیلات، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران *(مسوول مکاتبات)
3 - استاد گروه محیط زیست، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، ایران
4 - استادیار گروه محیط زیست، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تریت مدرس، نور، ایران
کلید واژه: TiO2, رنگ راکتیو 195, فوتوکاتالیست نقره دوپ شده, زئولیت Fe-ZSM-5,
چکیده مقاله :
زمینه و هدف: تخلیه فاضلاب های رنگی حاصل از عملکرد صنایع رنگ رزی به آب های پذیرنده، به دلیل پایداری در محیط زیست، سمی بوده و موجب آسیب به محیط زیست می شود. حذف رنگ از فاضلاب های رنگی با روش های متداول تصفیه فاضلاب مشکل می باشد. بنابراین، فرایند اکسیداسیون پیشرفته روشی موثر برای حذف این دسته از آلاینده های آلی می باشد. روش بررسی: در این مطالعه از نقره دوپ شده با تیتانیوم دی اکسید بر پایه زئولیت Fe-ZSM-5 برای تجزیه فوتوکاتالیکی رنگ راکتیو 195 از محلول آبی با استفاده از نور UV (فرابنفش) استفاده شد که در این راستا اثر نسبت های مختلف تیتانیوم دی اکسید به Fe-ZSM-5، غلظت رنگ، غلظت فوتوکاتالیست و pH در دمای محیط مورد بررسی قرار گرفت. یافته ها: آنالیز EDXبا تجزیه و تحلیل عنصری نیمه کمی از سطح نشان داد که Ti و نقره با موفقیت روی سطح زئولیت Fe-ZSM-5قرار گرفتند. در تصاویر SEM اندازه، جهت و مورفولوژی فوتوکاتالیست سنتزی مورد بررسی قرار گرفت. که ذرات TiO2 و نقره سنتز شده دارای شکل و اندازه یکنواخت بوده ودارای ابعاد کم تر از 50 نانومتر می باشند. آنالیز EDX درصد وزنی عناصر تشکیل دهنده فوتوکاتالیست سنتزی را 98/19، 48/5، 95/56 و 65/15به ترتیب برای سیلیس، آهن، تیتانیوم و نقره تعیین نمود و آنالیزXRD نیز حضور فاز Fe-ZSM-5، آناتاز TiO2 و نانوذرات نقره را در فوتوکاتالیست سنتز شده تایید نمود. بحث و نتیجه گیری: نتایج نشان داد که کارایی حذف فوتوکاتالیتیکی فوتوکاتالیست نقره دوپ شده با دی اکسید تیتانیوم بر پایه زئولیت Fe-ZSM-5 به طور معنی داری تحت تاثیر pH می باشد. کارایی حذف با افزایش pH کاهش یافت. بهترین کارایی فوتوکاتالیستFe-ZSM-5@TiO2_Ag در حذف رنگ راکتیو 195 (100%) در pH برابر 3، غلظت فوتوکاتالیست 300 میلی گرم بر لیتر، غلظت رنگ برابر 50 میلی گرم بر لیتر در مدت زمان 75 دقیقه و نسبت Ag-TiO2برابر یک به دست آمد. همچنین حداقل کارایی حذف رنگ برابر 32% در pH برابر 9 تحت شرایط بهینه بود. قابلیت استفاده مجدد از فوتوکاتالیست بعد از هفت دور استفاده مکرر از آن معنی دار بود.
Background and Objective: The discharge of dying wastewater effluent from the textile industry into the water body can be toxic due to their long time presence in the environment and is the leading major cause of the environmental damage. It is difficult to remove color from dye effluents with conventional wastewater treatment methods. Then advanced oxidation processes (AOPs) are potentially powerful method to remove these organic contaminations. Method: In the present study the photocatalytic performance of the silver-doped titanium dioxide (TiO2) nanoparticles over the surface of Fe-ZSM-5 zeolite was investigated trough the degradation of reactive red 195 dyes in water under light UV. The Effects of different titanium dioxide to Fe-ZSM-5 ratio, dye concentration, photocatalyst concentration and pH of the water solution was studied at room temperature. Findings: The EDX analysis, a semiquantitative elemental analysis of the surface which indicates that Ti and silver (Ag) was successfully loaded on the surface of Fe-ZSM-5 zeolite. The result of EDX shows that the mean weight percentage of Si, Fe, Ti and Ag was 19.98, 5.48, 56.95 and 15.65%, respectively. The SEM images showed that unloaded Fe-ZSM-5 zeolite has a well-defined cubic shape and tends to change a spherical regular morphology and a uniform nanoparticle of TiO2 and Ag with spherical shape distributed onto Ag-TiO2/Fe-ZSM-5 photocatalyst. The XRD analysis approved the formation of the Fe-ZSM-5 and anatase TiO2 nanoparticles and Ag-doped onto surface of the Fe-ZSM-5 photocatalyst. Discussion and Conclusion: The results revealed that photocatalytic removal efficiency of Fe-ZSM-5 with Ag-doped TiO2 was significantly influenced by the solution pH. It decreased as the solution pH increased. The best performance of Ag-TiO2/Fe-ZSM-5 photocatalyst in removal of Reactive 195 (100%) was achieved at pH 3, 300 mg/L photocatalyst dose, 50 mg/L dye concentration, 75 min contact time and Ag-TiO2 with the ratio of 1. However, a minimum of dye removal efficiency of 32% was obtaimed at pH 9 under aforementioned condition. The reusability of the photocatalyst was still significant after seven times repeated cycles.
- Yagub, M. T., Sen, T. K., Afroze, S., Ang, H. M., 2014. Dye and its Removal from aqueous solution by adsorption: a review. Advances Adsorption in colloid and interface science, Vol. 209, pp. 172-184
- Arslan, I., Balcioǧlu, I. A., Bahnemann, D. W., 2000. Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO 2/UV-A processes. Dyes and pigments, Vol. 47, pp. 207-218
- Sauer, T., Neto, G. C., Jose, H. J., Moreira, R. F. P. M., 2002. Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. Journal of Photochemistry and Photobiology A: Chemistry, Vol. 149, pp. 147-154
- Maleki, A., Mahvi, A. H., Shahmoradi, B., 2011. Hydroxyl radical-based processes for decolourization of direct blue 71: A comparative study. Asian Journal of Chemistry, Vol. 23, pp. 4411-4415
- Padmanabhan, P. V. A., Sreekumar, K. P., Thiyagarajan, T. K., Satpute, R. U., Bhanumurthy, K., Sengupta, P., Warrier, K. G. K., 2006. Nano-crystalline titanium dioxide formed by reactive plasma synthesis. Vacuum, Vol. 80, pp. 1252-1255
- Alaton, I. A., Balcioglu, I. A., Bahnemann, D. W. 2002. Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Research, Vol. 36, pp. 1143-1154
- Corma, A., Garcia, H., 2004. Zeolite-based photocatalysts. Chemical communications, Vol. 13, pp. 1443-1459
- Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., Gernjak, W., 2009. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catalysis Today, Vol. 147, pp.1-59
- Mahmoodi, N. M., Arami, M., Limaee, N. Y., Tabrizi, N. S., 2006. Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO 2 photocatalytic reactor. Journal of colloid and interface Science, Vol. 295, pp. 159-164
- Pirkarami, A., Olya, M. E., Farshid, S. R., 2014. UV/Ni–TiO2 nanocatalyst for electrochemical removal of dyes considering operating costs. Water Resources and Industry, Vol. 5, pp. 9-20
- Konstantinou, I. K., Albanis, T. A., 2004. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Applied Catalysis B: Environmental, Vol. 49, pp. 1-14
- Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Entezari, M. H., 2012. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, Vol. 125, pp. 331-349
- Stamate, M.,Lazar, G., 2007. Application of titanium dioxide photocatalysis to create self-cleaning materials. Modeling and Optimization in the Machines Building Field (MOCM), Vol. 13, pp. 280-285
- Noorjahan, M., Kumari, V. D., Subrahmanyam, M., Boule, P., 2004. A novel and efficient photocatalyst: TiO2-HZSM-5 combinate thin film. Applied Catalysis B: Environmental, Vol. 47, pp. 209-213
- Bouvy, C., Marine, W., Sporken, R., Su, B. L., 2006. Photoluminescence properties and quantum size effect of ZnO nanoparticles confined inside a faujasite X zeolite matrix. Chemical physics letters, Vol. 428, pp. 312-316
- Durgakumari, V., Subrahmanyam, M., Rao, K. S., Ratnamala, A., Noorjahan, M., Tanaka, K., 2002. An easy and efficient use of TiO2 supported HZSM-5 and TiO2+ HZSM-5 zeolite combinate in the photodegradation of aqueous phenol and p-chlorophenol. Applied Catalysis A: General, Vol. 234, pp. 155-165
- Vempati, R. K., Borade, R., Hegde, R. S., Komarneni, S., 2006. Template free ZSM-5 from siliceous rice hull ash with varying C contents. Microporous and Mesoporous Materials, Vol. 93, pp. 134-140
- Divakar, D., Romero-Sáez, M., Pereda-Ayo, B., Aranzabal, A., González-Marcos, J. A., González-Velasco, J. R., 2011. Catalytic oxidation of trichloroethylene over Fe-zeolites. Catalysis today, Vol. 176, pp. 357-360
- Chi, Y., Yuan, Q., Li, Y., Zhao, L., Li, N., Li, X., Yan, W., 2013. Magnetically separable Fe3O4@ SiO2@ TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity. Journal of hazardous materials, Vol. 262, pp. 404-411
- van Grieken, R., Marugán, J., Sordo, C., Martínez, P., Pablos, C., 2009. Photocatalytic inactivation of bacteria in water using suspended and immobilized silver-TiO2. Applied Catalysis B: Environmental, Vol. 93, pp. 112-118
- Huang, X., Wang, G., Yang, M., Guo, W., Gao, H., 2011. Synthesis of polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres and their photocatalytic application. Materials Letters, Vol. 65, pp. 2887-2890
- Brückner, A., Lück, R., Wieker, W., Fahlke, B., Mehner, H., 1992. Epr study on the incorporation of Fe (III) ions in ZSM-5 zelites in dependence on the preparation conditions. Zeolites, Vol. 12, pp. 380-385
- Huang, M., Xu, C., Wu, Z., Huang, Y., Lin, J., Wu, J., 2008. Photocatalytic discolorization of methyl orange solution by Pt modified TiO 2 loaded on natural zeolite. Dyes and Pigments, Vol. 77, pp. 327-334
- Wang, C., Shi, H., Li, Y., 2011. Synthesis and characteristics of natural zeolite supported Fe3+-TiO2 photocatalysts. Applied Surface Science, Vol. 257, pp. 6873-6877
- Fujishima, A., Zhang, X., Tryk, D. A., 2008. TiO2 photocatalysis and related surface phenomena. Surface Science Reports, Vol. 63, pp. 515-582
- Ghasemi, Z., Younesi, H., Zinatizadeh, A. A., 2016. Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum. Chemosphere, Vol. 159, pp. 552-564
- Mahesh, K. P. O., Kuo, D. H., Huang, B. R., 2015. Facile synthesis of heterostructured Ag-deposited SiO2@TiO2 composite spheres with enhanced catalytic activity towards the photodegradation of AB 1 dye. Journal of Molecular Catalysis A: Chemical, Vol. 396, pp. 290-296
- Chong, M. N., Jin, B., Chow, C. W., Saint, C., 2010. Recent developments in photocatalytic water treatment technology: a review. Water research, Vol. 44, pp. 2997-3027
- Phu, N. H., Hoa, T. T. K., Van Tan, N., Thang, H. V., Le Ha, P., 2001. Characterization and activity of Fe-ZSM-5 catalysts for the total oxidation of phenol in aqueous solutions. Applied Catalysis B: Environmental, Vol. 34, pp. 267-275
- Xue, C. H., Chen, J., Yin, W., Jia, S. T., Ma, J. Z., 2012. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Applied Surface Science, Vol. 258, pp. 2468-2472
- Ghasemi, Z., Younesi, H., Zinatizadeh, A. A., 2016. Kinetics and thermodynamics of photocatalytic degradation of organic pollutants in petroleum refinery wastewater over nano-TiO2 supported on Fe-ZSM-5. Journal of the Taiwan Institute of Chemical Engineers. Vol. 65, pp. 357-366
- Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R., Hashib, M. A., 2010. Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination, Vol. 261, pp. 3-18
- Rengaraj, S., Li, X. Z., 2007. Enhanced photocatalytic reduction reaction over Bi3+–TiO2 nanoparticles in presence of formic acid as a hole scavenger. Chemosphere, Vol. 66, pp. 930-938
- Ranjit KT, Viswanathan B., 1997. Photocatalytic reduction of nitrite and nitrate ions to ammonia on M/TiO2 catalysts. Journal of Photochemistry and Photobiology A: Chemistry, Vol. 108, pp. 73-78
_||_
- Yagub, M. T., Sen, T. K., Afroze, S., Ang, H. M., 2014. Dye and its Removal from aqueous solution by adsorption: a review. Advances Adsorption in colloid and interface science, Vol. 209, pp. 172-184
- Arslan, I., Balcioǧlu, I. A., Bahnemann, D. W., 2000. Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO 2/UV-A processes. Dyes and pigments, Vol. 47, pp. 207-218
- Sauer, T., Neto, G. C., Jose, H. J., Moreira, R. F. P. M., 2002. Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. Journal of Photochemistry and Photobiology A: Chemistry, Vol. 149, pp. 147-154
- Maleki, A., Mahvi, A. H., Shahmoradi, B., 2011. Hydroxyl radical-based processes for decolourization of direct blue 71: A comparative study. Asian Journal of Chemistry, Vol. 23, pp. 4411-4415
- Padmanabhan, P. V. A., Sreekumar, K. P., Thiyagarajan, T. K., Satpute, R. U., Bhanumurthy, K., Sengupta, P., Warrier, K. G. K., 2006. Nano-crystalline titanium dioxide formed by reactive plasma synthesis. Vacuum, Vol. 80, pp. 1252-1255
- Alaton, I. A., Balcioglu, I. A., Bahnemann, D. W. 2002. Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Research, Vol. 36, pp. 1143-1154
- Corma, A., Garcia, H., 2004. Zeolite-based photocatalysts. Chemical communications, Vol. 13, pp. 1443-1459
- Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., Gernjak, W., 2009. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catalysis Today, Vol. 147, pp.1-59
- Mahmoodi, N. M., Arami, M., Limaee, N. Y., Tabrizi, N. S., 2006. Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO 2 photocatalytic reactor. Journal of colloid and interface Science, Vol. 295, pp. 159-164
- Pirkarami, A., Olya, M. E., Farshid, S. R., 2014. UV/Ni–TiO2 nanocatalyst for electrochemical removal of dyes considering operating costs. Water Resources and Industry, Vol. 5, pp. 9-20
- Konstantinou, I. K., Albanis, T. A., 2004. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Applied Catalysis B: Environmental, Vol. 49, pp. 1-14
- Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Entezari, M. H., 2012. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, Vol. 125, pp. 331-349
- Stamate, M.,Lazar, G., 2007. Application of titanium dioxide photocatalysis to create self-cleaning materials. Modeling and Optimization in the Machines Building Field (MOCM), Vol. 13, pp. 280-285
- Noorjahan, M., Kumari, V. D., Subrahmanyam, M., Boule, P., 2004. A novel and efficient photocatalyst: TiO2-HZSM-5 combinate thin film. Applied Catalysis B: Environmental, Vol. 47, pp. 209-213
- Bouvy, C., Marine, W., Sporken, R., Su, B. L., 2006. Photoluminescence properties and quantum size effect of ZnO nanoparticles confined inside a faujasite X zeolite matrix. Chemical physics letters, Vol. 428, pp. 312-316
- Durgakumari, V., Subrahmanyam, M., Rao, K. S., Ratnamala, A., Noorjahan, M., Tanaka, K., 2002. An easy and efficient use of TiO2 supported HZSM-5 and TiO2+ HZSM-5 zeolite combinate in the photodegradation of aqueous phenol and p-chlorophenol. Applied Catalysis A: General, Vol. 234, pp. 155-165
- Vempati, R. K., Borade, R., Hegde, R. S., Komarneni, S., 2006. Template free ZSM-5 from siliceous rice hull ash with varying C contents. Microporous and Mesoporous Materials, Vol. 93, pp. 134-140
- Divakar, D., Romero-Sáez, M., Pereda-Ayo, B., Aranzabal, A., González-Marcos, J. A., González-Velasco, J. R., 2011. Catalytic oxidation of trichloroethylene over Fe-zeolites. Catalysis today, Vol. 176, pp. 357-360
- Chi, Y., Yuan, Q., Li, Y., Zhao, L., Li, N., Li, X., Yan, W., 2013. Magnetically separable Fe3O4@ SiO2@ TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity. Journal of hazardous materials, Vol. 262, pp. 404-411
- van Grieken, R., Marugán, J., Sordo, C., Martínez, P., Pablos, C., 2009. Photocatalytic inactivation of bacteria in water using suspended and immobilized silver-TiO2. Applied Catalysis B: Environmental, Vol. 93, pp. 112-118
- Huang, X., Wang, G., Yang, M., Guo, W., Gao, H., 2011. Synthesis of polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres and their photocatalytic application. Materials Letters, Vol. 65, pp. 2887-2890
- Brückner, A., Lück, R., Wieker, W., Fahlke, B., Mehner, H., 1992. Epr study on the incorporation of Fe (III) ions in ZSM-5 zelites in dependence on the preparation conditions. Zeolites, Vol. 12, pp. 380-385
- Huang, M., Xu, C., Wu, Z., Huang, Y., Lin, J., Wu, J., 2008. Photocatalytic discolorization of methyl orange solution by Pt modified TiO 2 loaded on natural zeolite. Dyes and Pigments, Vol. 77, pp. 327-334
- Wang, C., Shi, H., Li, Y., 2011. Synthesis and characteristics of natural zeolite supported Fe3+-TiO2 photocatalysts. Applied Surface Science, Vol. 257, pp. 6873-6877
- Fujishima, A., Zhang, X., Tryk, D. A., 2008. TiO2 photocatalysis and related surface phenomena. Surface Science Reports, Vol. 63, pp. 515-582
- Ghasemi, Z., Younesi, H., Zinatizadeh, A. A., 2016. Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum. Chemosphere, Vol. 159, pp. 552-564
- Mahesh, K. P. O., Kuo, D. H., Huang, B. R., 2015. Facile synthesis of heterostructured Ag-deposited SiO2@TiO2 composite spheres with enhanced catalytic activity towards the photodegradation of AB 1 dye. Journal of Molecular Catalysis A: Chemical, Vol. 396, pp. 290-296
- Chong, M. N., Jin, B., Chow, C. W., Saint, C., 2010. Recent developments in photocatalytic water treatment technology: a review. Water research, Vol. 44, pp. 2997-3027
- Phu, N. H., Hoa, T. T. K., Van Tan, N., Thang, H. V., Le Ha, P., 2001. Characterization and activity of Fe-ZSM-5 catalysts for the total oxidation of phenol in aqueous solutions. Applied Catalysis B: Environmental, Vol. 34, pp. 267-275
- Xue, C. H., Chen, J., Yin, W., Jia, S. T., Ma, J. Z., 2012. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Applied Surface Science, Vol. 258, pp. 2468-2472
- Ghasemi, Z., Younesi, H., Zinatizadeh, A. A., 2016. Kinetics and thermodynamics of photocatalytic degradation of organic pollutants in petroleum refinery wastewater over nano-TiO2 supported on Fe-ZSM-5. Journal of the Taiwan Institute of Chemical Engineers. Vol. 65, pp. 357-366
- Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R., Hashib, M. A., 2010. Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination, Vol. 261, pp. 3-18
- Rengaraj, S., Li, X. Z., 2007. Enhanced photocatalytic reduction reaction over Bi3+–TiO2 nanoparticles in presence of formic acid as a hole scavenger. Chemosphere, Vol. 66, pp. 930-938
- Ranjit KT, Viswanathan B., 1997. Photocatalytic reduction of nitrite and nitrate ions to ammonia on M/TiO2 catalysts. Journal of Photochemistry and Photobiology A: Chemistry, Vol. 108, pp. 73-78