Geometrical Parameters of Rectangular AFM Cantilevers Producing Highest Sensitivity in Excitation of Second Mode in Air Environment
Subject Areas : Mechanical Engineering
1 - Department of Mechanical Engineering,
Islamic Azad University, Shahr-e-Qods Branch, Tehran, Iran
Keywords:
Abstract :
[1] Martin, Y., C. Williams, and H. K., Wickramasinghe, “Atomic Force Microscope–Force Mapping and Profiling on a Sub 100‐Å Scaleˮ, Journal of Applied Physics, Vol. 61, No. 10, 1987, pp. 4723-4729.
[2] Stark, M., et al., “From Images to Interactions: High-Resolution Phase Imaging in Tapping-Mode Atomic Force Microscopyˮ, Biophysical journal, Vol. 80, No. 6, 2001, pp. 3009-3018.
[3] Xu, X., et al., “Unmasking Imaging Forces on Soft Biological Samples in Liquids when using Dynamic Atomic Force Microscopy, A Case Study on Viral Capsidsˮ, Biophysical journal, Vol. 95, No. 5, 2008, pp. 2520-2528.
[4] Stark, M., et al., “Inverting Dynamic Force Microscopy: From Signals to Time-Resolved Interaction Forcesˮ, Proceedings of the National Academy of Sciences, Vol. 99, No. 13, 2002, pp. 8473-8478.
[5] Legleiter, J., et al., “Scanning Probe Acceleration Microscopy (SPAM) in Fluids: Mapping Mechanical Properties of Surfaces at the Nanoscaleˮ, Proceedings of the National Academy of Sciences of the United States of America, Vol. 103, No. 13, 2006, pp. 4813-4818.
[6] Hillenbrand, R., M. Stark, and R. Guckenberger, “Higher-Harmonics Generation in Tapping-Mode Atomic-Force Microscopy: Insights into the Tip–Sample Interactionˮ, Applied Physics Letters, Vol. 76, No. 23, 2000, pp. 3478-3480.
[7] Sahin, O., A. Atalar, “Simulation of Higher Harmonics Generation in Tapping-Mode Atomic Force Microscopyˮ, Applied Physics Letters, Vol. 79, No. 26, 2001, pp. 4455-4457.
[8] Stark, R.W., “Spectroscopy of Higher Harmonics in Dynamic Atomic Force Microscopyˮ, Nanotechnology, Vol. 15, No. 3, 2004, pp. 347.
[9] Sharos, L., et al., “Enhanced Mass Sensing using Torsional and Lateral Resonances in Microcantileversˮ, Applied Physics Letters, Vol. 84, No. 23, 2004, pp. 4638-4640.
[10]Basak, S., A. Raman, “Dynamics of Tapping Mode Atomic Force Microscopy in Liquids: Theory and Experimentsˮ, Applied Physics Letters, Vol. 91, No. 6, 2007, pp. 064107.
[11]Melcher, J., et al., “Origins of Phase Contrast in the Atomic Force Microscope in Liquidsˮ, Proceedings of the National Academy of Sciences, Vol. 106, No. 33, 2009, pp.13655-13660.
[12]Garcia, R., E. T. Herruzo, “The Emergence of Multifrequency Forces Microscopyˮ, Nature nanotechnology, Vol. 7, No. 4, 2012, pp. 217-226.
[13]Rodrıguez, T. R., R. Garcı́a, “Compositional Mapping of Surfaces in Atomic Force Microscopy by Excitation of the Second Normal Mode of the Microcantileverˮ, Applied Physics Letters, Vol. 84, No. 3, 2004, pp. 449-451.
[14]Sadewasser, S., Villanueva, G. and Plaza, J. “Special Cantilever Geometry for the Access of Higher Oscillation Modes in Atomic Force Microscopyˮ, Applied physics letters, Vol. 89, No. 3, 2006, pp. 033106.
[15]Damircheli, M., M. Korayem, “Dynamic Analysis of the AFM by Applying the Timoshenko Beam Theory in the Tapping Mode and Considering the Impact of the Interaction Forces in a Liquid Environmentˮ, Canadian Journal of Physics, Vol. 92, No. 6, 2013, pp. 472-483.
[16]Johnson, K., “Contact Mechanicsˮ, Cambridge University Press, Cambridge, 1985, UK.
[17]Derjaguin, B., V. Muller, and Y. P. Toporov, “Effect of Contact Deformations on the Adhesion of Particlesˮ, Journal of Colloid and interface science, Vol. 53, No. 2, 1975, pp. 314-326.
[18]Song, Y., B. Bhushan, “Finite-Element Vibration Analysis of Tapping-Mode Atomic Force Microscopy in Liquidˮ, Ultramicroscopy, Vol. 107, No. 2, 2007, pp. 1095-1104.