• Home
  • mehrnoosh damircheli

    List of Articles mehrnoosh damircheli


  • Article

    1 - Dynamic Analysis of AFM in Air and Liquid Environments Considering Linear and Non-linear Interaction Forces by Timoshenko Beam Model
    International Journal of Advanced Design and Manufacturing Technology , Issue 2 , Year , Spring 2015
    The atomic force microscopy of the cantilever beam frequency response behaviour in the liquid environment is different in comparison with air environment. In this paper, the dynamic analysis of AFM in the air and liquid environments is carried out in consideration of li More
    The atomic force microscopy of the cantilever beam frequency response behaviour in the liquid environment is different in comparison with air environment. In this paper, the dynamic analysis of AFM in the air and liquid environments is carried out in consideration of linear and non-linear interaction forces and also the effect of geometrical parameters such as length, width, height; and inclined angle on the vibrating motion of the rectangular cantilever is investigated. A rectangular cantilever based on the Timoshenko theory is simulated in ADAMS software and more accurate results are obtained by considering the probe tip and the angular location of cantilever at simulation. At the end of the cantilever, a silicone probe is considered where the applied forces on it are approximated using two tangential and vertical springs. The vibrational simulation of cantilever at two states is carried out with regard to linear and non-linear interaction forces. The amplitude and resonance frequency of the simulated cantilever based on Timoshenko theory are different from obtained results of Euler-Bernoulli theory due to the effect of shear deformation and rotary moment in Timoshenko theory. Therefore, the Timoshenko theory has better accuracy in comparison with Euler theory. Many chemical and biological processes occur instantly; therefore the use of cantilevers with small length for improving the imaging speed at the tapping mode and in the liquid environment is essential. Eventually short cantilever that is modeled based on the Timoshenko theory may produce more accurate results. This paper is aimed to demonstrate that the amplitude and resonance frequency of vibration in the liquid environment is different from amplitude and frequency of vibration in the air environment due to the damping coeficient and added mass of liquid. Manuscript profile

  • Article

    2 - Numerical Simulation of Fluid-Structure Interaction and its Application in Impact of Low-Velocity Projectiles with Water Surface
    International Journal of Advanced Design and Manufacturing Technology , Issue 2 , Year , Spring 2015
    In this article, finite element method and ALE formulation were used to numerically simulate impact of low-velocity specific projectiles with water surface. For the simulation, Ls-Dyna finite element code was used. Material models which were used to express behavior of More
    In this article, finite element method and ALE formulation were used to numerically simulate impact of low-velocity specific projectiles with water surface. For the simulation, Ls-Dyna finite element code was used. Material models which were used to express behavior of air and water included Null material model. For the projectile, plastic-kinematics material model was applied. Mie-Gruneisen equation of state was also attributed to air and water. First, the results were validated by analyzing the impact of metallic cylinder with water surface and then impact of a mine as a low-velocity projectile was simulated. Among major outputs were force and pressure applied to the projectile, velocity and acceleration variations upon entering water, stress-strain variations and variations of water surface in various steps of analysis. The results showed that impact of structure with fluid can be modeled using finite element model with high accuracy in terms of quality and quantity. Manuscript profile

  • Article

    3 - Geometrical Parameters of Rectangular AFM Cantilevers Producing Highest Sensitivity in Excitation of Second Mode in Air Environment
    International Journal of Advanced Design and Manufacturing Technology , Issue 4 , Year , Summer 2017
    Today, improving the quality of the images acquired by the atomic force microscope (AFM) and obtaining the close properties of various samples are among the most important and challenging issues tackled by researchers. One of the key mechanisms of achieving these object More
    Today, improving the quality of the images acquired by the atomic force microscope (AFM) and obtaining the close properties of various samples are among the most important and challenging issues tackled by researchers. One of the key mechanisms of achieving these objectives is the excitation of higher modes, which raises the sensitivity of the AFM and consequently improves the resolution. To attain this goal, it is imperative to design or select a type of cantilever which is able to excite the second mode and produce maximum sensitivity in higher modes, especially the second mode. In this paper, an AFM cantilever with rectangular cross section has been investigated in air medium. The cantilever has been modeled by the Timoshenko beam model and the normal and tangential forces between cantilever tip and sample have been considered in the simulations. By changing the geometrical parameters of the AFM’s cantilever and tip including length, width, thickness of cantilever, the angle between cantilever and sample surface, mass of tip, length of tip and Radius of tip, the frequency ratio of the second mode to first mode varies. The geometrical parameters that produce the minimum frequency ratio can increase the self-excitation probability of the second mode due to the excitation of the first mode simultaneously. The optimum geometrical parameters are derived that can increase the chance of higher mode excitation. The results indicate that the sensitivity of the second mode to sample stiffness also increases optimal geometrical parameters that yield the minimum frequency ratio; and, as a result, a higher contrast is achieved and it leads users to utilize the cantilevers with optimum geometry for achieving best contrast in imaging and properties estimation of unknown samples. Manuscript profile

  • Article

    4 - Frequency Response of AFM Nano Robot in Liquid by considering the effect of Cantilever's dimension and Environmental Parameters
    International Journal of Advanced Design and Manufacturing Technology , Issue 5 , Year , Autumn 2014
    Dynamic analysis and study of Atomic force microscope in liquid environment is the main goal of this research. Hydrodynamic and squeeze forces act on Cantilever of Atomic force microscope which works in liquid environment, so. In this paper the effect of different envir More
    Dynamic analysis and study of Atomic force microscope in liquid environment is the main goal of this research. Hydrodynamic and squeeze forces act on Cantilever of Atomic force microscope which works in liquid environment, so. In this paper the effect of different environmental and physical factors had studied on frequency response diagrams. The importance of frequency response analysis is studying the possibility of occur a phenomenon which causes disturbance and decreases accuracy of imaging. Timoshenko beam model and finite element method had been used in order to simulation. Meanwhile interaction forces between sample and tip point in gas and liquid environment were also considered in simulations. Achieved results had showed that in comparison with gas, resonance frequency has decreased considerably in liquid environment which is due to additional mass of liquid and also amplitude is decreased in liquid environment that’s because of additional damping due to presence of liquid. Meanwhile several studies in repulsion and attraction area with more and less distance from equilibrium distance, had showed that in repulsion state, stimulation frequency is more than attraction area, that the reason is related to more hardness in repulsion area, and also the presence of interaction forces had caused that in zero excitation frequency, amplitude isn’t zero. Manuscript profile