Fluence and wavelength optimization of pulsed laser in photothermal therapy
Subject Areas : Interaction of Light with Tissue and CellsRasoul Malekfar 1 , Neda Amjadi 2
1 - Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, I.R. Iran
2 - Shahid Chamran And Al-E-Ahmad Highways Cross Road,
Tehran, Iran
Keywords:
Abstract :
Y. Liu, P. Bhattarai, Z. Dai, and X. Chen, “Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer”, Chem. Soc. Rev. vol. 48, pp. 2053–2108, 2019.
[2] J. Ferlay, M. Colombet, I. Soerjomataram, C. Mathers, D. M. Parkin, M. Piñeros, A. Znaor, and F. Bray, “Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods”, Int. J. cancer, vol. 144, pp. 1941–1953, 2019.
[3] B. Farran B. Farran, R. C. Montenegro, P. Kasa, E. Pavitra, Y. S. Huh, Y. K. Han, M. Amjad Kamal, G. Purnachandra Nagaraju, and G. S. R. Raju, “Folate-conjugated nanovehicles: Strategies for cancer therapy”, Mater. Sci. Eng. C, vol. 107, pp. 110341, 2020.
[4] S.-X. Chen, M. Ma, F. Xue, Sh. Shen, Q. Chen, Y. Kuang, K. Liang, X. Wang, and H. Chen, “Construction of microneedle-assisted co-delivery platform and its combining photodynamic/immunotherapy”, J. Control. Release, vol. 324, pp. 218–227, 2020.
[5] H. Wang, M.R. Revia, K. Wang, M.R.J. Kant, Q. Mu, Z. Gai, K. Hong, and M. Zhang, “Paramagnetic properties of metal-free boron-doped graphene quantum dots and their application for safe magnetic resonance imaging”, Adv. Mater. vol. 29, 2017.
[6] H. K. Moon, S. H. Lee, and H. C. Choi, “In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes”, ACS Nano, vol. 3, pp. 3707–3713, 2009.
[7] Y. Liu, B. M. Crawford, and T. Vo-Dinh, “Gold nanoparticles-mediated photothermal therapy and immunotherapy”, Immunotherapy, vol. 10, pp. 1175–1188, 2018.
[8] J.-W. Kim, E. I. Galanzha, E. V Shashkov, H.-M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents”, Nat. Nanotechnol. vol. 4, no. 10, pp. 688–694, 2009.
[9] J. Li , H. Xiao, S.J. Yoon, C. Liu, D. Matsuura, W. Tai, L. Song, M. O'Donnell, D. Cheng, and X. Gao, “Functional Photoacoustic Imaging of Gastric Acid Secretion Using pH‐Responsive Polyaniline Nanoprobes”, Small, vol. 12, pp. 4690–4696, 2016.
[10] T. Xu , Y. Ma, Q .Yuan, H. Hu, X. Hu, Z. Qian, J.K. Rolle, Y. Gu, and S. Li, “Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy”, ACS Nano, vol. 14, pp. 3414–3425, 2020.
[11] X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods”, J. Am. Chem. Soc. vol. 128, pp. 2115–2120, 2006.
[12] I. V Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions”, Physiol. Meas. vol. 23, pp. 741-753, 2002.
[13] J. Zhou et al., “NIR photothermal therapy using polyaniline nanoparticles”, Biomaterials, vol. 34, pp. 9584–9592, 2013.
[14] B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters”, Nanotechnology, vol. 17, pp. 5167-5179, 2006.
[15] S. Hwang, J. Nam, S. Jung, J. Song, H. Doh, and S. Kim, “Gold nanoparticle-mediated photothermal therapy: current status and future perspective”, Nanomedicine, vol. 9, pp. 2003–2022, 2014.
[16] Y. Ren, Q. Chen, H. Li, H. Qi, and Y. Yan, “Passive control of temperature distribution in cancerous tissue during photothermal therapy using optical phase change nanomaterials”, Int. J. Therm. Sci. vol. 161, pp. 106754, 2021.
[17] A. H. Wyllie, “Cell death,” Cytol. Cell. Physiol. pp. 755–785. 1987.
[18] M. C. Hawes and H. Wheeler, “Factors affecting victorin-induced root cap cell death: Temperature and plasmolysist”, Physiol. Plant Pathol. vol. 20, pp. 137–144, 1982.
[19] P. Purohit, A. Samadi, P. M. Bendix, and J. J. Laserna, “Optical trapping reveals differences in dielectric and optical properties of copper nanoparticles compared to their oxides and ferrites”, Sci. Rep. pp. 1–10, 2020.
[20] P. B. Johnson and R. W. Christy, “Optical Constant of the Nobel Metals”, Phys. Rev. B, vol. 6, pp. 4370–4379, 1972.
[21] A. Hatef, N. Zamani, and W. Johnston, “Coherent control of optical absorption and the energy transfer pathway of an infrared quantum dot hybridized with a VO2 nanoparticle”, J. Phys. Condens. Matter, vol. 29, pp. 155305 (1-9), 2017.
[22] A. Hatef, B. Darvish, A. Dagallier, Y.R .Davletshin, W. Johnston, J. C. Kumaradas, D. Rioux, and M. Meunier, “Analysis of photoacoustic response from gold-silver alloy nanoparticles irradiated by short pulsed laser in water”, J. Phys. Chem. C, vol. 119, pp. 24075–24080, 2015.
[23] Y. Fan, Y. Liu, K. Zhang, Q. Feng, and H. San, “Phase-change regulation criterion based on size-dependent lattice distortion rate and born theory for VO 2 nanomaterials”, Ceram. Int. vol. 47, pp. 3232-3237, 2021.
[24] T. Moradi and A. Hatef, “Thermal tracing of a highly reconfigurable and wideband infrared heat sensor based on vanadium dioxide”, J. Appl. Phys. vol. 127, pp. 24310 (1-10), 2020.
[25] T. Kawakubo and T. Nakagawa, “Phase transition in VO2”, J. Phys. Soc. Japan, vol. 19, pp. 517–519, 1964.
[26] P. Giannios, K. G. Toutouzas, M. Matiatou, K. Stasinos, M. M. Konstadoulakis, G. C. Zografos and K. Moutzouris, “Visible to near-infrared refractive properties of freshly-excised human-liver tissues: Marking hepatic malignancies”, Sci. Rep. vol. 6, pp. 1–10, 2016.
[27] M. Selmi, A. Bajahzar, and H. Belmabrouk, “Effects of target temperature on thermal damage during temperature-controlled MWA of liver tumor”, Case Stud. Therm. Eng. vol. 31, pp. 101821, 2022.
[28] C. Loo et al., ‘Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer’, Technol. Cancer Res. Treat., vol. 3, no. 1, pp. 33–40, 2004, doi: 10.1177/153303460400300104.
[29] J. Zhu, R. Huang, M. Ji, G. Su, P. Zhan, and Z. Lu, “Synthesis of monodispersed VO2@Au core-semishell submicroparticles and their switchable optical properties”, J. Mater. Chem. C, vol. 9, pp. 11669–11673, 2021.
[30] I. Balin, S. Wang, P. Wang, Y. Long, and I. Abdulhalim, “Enhanced Transition-Temperature Reduction in a Half-Sphere Au/VO 2 Core-Shell Structure: Local Plasmonics versus Induced Stress and Percolation Effects”, Phys. Rev. Appl. vol. 11, pp. 34064, 2019.
[31] V. T. C. Tsang, X. Li, and T. T. W. Wong, “A review of endogenous and exogenous contrast agents used in photoacoustic tomography with different sensing configurations”, Sensors (Switzerland), vol. 20, pp. 1–20, 2020.
[32] J. Cao, B. Zhu, K. Zheng, S. He, L. Meng, J. Song, and H. Yang, “Recent Progress in NIR-II Contrast Agent for Biological Imaging”, Front. Bioeng. Biotechnol. vol. 7, pp. 1–21, 2020.
[33] Y. Ke, S. Wang, G. Liu, M. Li, T. J. White, and Y. Long, “Vanadium Dioxide: The Multistimuli Responsive Material and Its Applications”, Small, vol. 14, pp. 1–29, 2018.