• Home
  • Atila Skandarnezhad

    List of Articles Atila Skandarnezhad


  • Article

    1 - A Fuel-Cell Based Boost Converter Model Using Euler-‎Lagrange Equation ‎
    Journal of Applied Dynamic Systems and Control , Issue 1 , Year , Winter 2018
    This paper presents a new modeling technique for fuel cell based switching converters. Often a step-up converter is used in the fuel cell applications due to its relative low voltage. Here a boost converter is used to convert the fuel cell voltage to the desired load le More
    This paper presents a new modeling technique for fuel cell based switching converters. Often a step-up converter is used in the fuel cell applications due to its relative low voltage. Here a boost converter is used to convert the fuel cell voltage to the desired load level. The aim of this paper is to study through analysis and simulation, the voltage mode control and dynamic modeling of series interconnected topology of a fuel cell based system. Euler-Lagrange (EL) equation is used here as a modeling technique which relies on the energy balance equilibrium because fuel cell based systems can be considered as an energy processing structure. The fuel cell must be protected against the current harmonics or sudden transients so that it provides the regulated voltage for output load. We use a LC filter between fuel cell and converter to prevent the current harmonics from reaching the fuel cell since this may lead to oxygen starvation phenomena around the electrodes surface or other faults. The proposed modelling procedure is applicable for any other converter based on fuel cells. Finally, simulation is done by PSIM and MATLAB softwares to validate the proposed modeling technique. We run both the frequency and time domain analysis to show that the proposed modeling technique coincides exactly with the simulation results. Manuscript profile

  • Article

    2 - Small Signal Modeling of a Synchronous Isolated Cuk Converter used in Photovoltaic Systems
    Journal of Applied Dynamic Systems and Control , Issue 1 , Year , Spring 2022
    This paper presents the small-signal modeling of a synchronous Cuk converter using state-space averaging method. In the proposed isolated converter, the conduction and switching losses reduced by replacing the traditional diode with transistor and employing an auxiliary More
    This paper presents the small-signal modeling of a synchronous Cuk converter using state-space averaging method. In the proposed isolated converter, the conduction and switching losses reduced by replacing the traditional diode with transistor and employing an auxiliary circuit. It causes the conversion efficiency of the photovoltaic system to be increased and better matching of the supplied load. Also this circuit has significant advantage over other topologies since it enables low voltage ripple on both input/output sides of the converter and better dynamic response. The low frequency small-signal model is done using state space averaging technique and two main power-stage transfer functions are derived, which are control-to-output voltage transfer function and input-to-output voltage transfer function. Using the proposed model of the converter we can analyze and simulate the time domain transient behavior of the system accurately and intuitively. Finally, the accuracy and validity of the proposed system model is verified by simulation results. Manuscript profile

  • Article

    3 - A Review of Single Electron Transistors
    Journal of Applied Dynamic Systems and Control , Issue 1 , Year , Spring 2022
    The single electron transistor (SET) is an effectual device to quantize current. It has been highly considered as the most fundamental single-electron device in the research field of nanotechnology. An electron from the single electron transistor (SET) is a pivotal elem More
    The single electron transistor (SET) is an effectual device to quantize current. It has been highly considered as the most fundamental single-electron device in the research field of nanotechnology. An electron from the single electron transistor (SET) is a pivotal element in the research field of nanotechnology. This type of transistor with very low power consumption and high-performance speed is considered as a nano-scaled switching device that can control the motion of a single electron. The principles of SET and some of its applications are discussed in this paper. In this research paper, we also focus on some basic device characteristics like ‘Coulomb blockade’, single electron tunneling effect & ‘Coulomb staircase’ on which this Single electron transistor [SET] works and the basic comparison of SET characteristics and also its [SET] advantages as well as disadvantages to make a clear picture about the reason behind its popularity in the field of nanoelectronics. Manuscript profile