• Home
  • Abdolhamid Azizi

    List of Articles Abdolhamid Azizi


  • Article

    1 - Evaluation of Fatigue Behavior and Surface Characteristics of Novel Machining Process: Rotary Chemical Machining (RCM)
    International Journal of Advanced Design and Manufacturing Technology , Issue 56 , Year , Summer 2024
    In this study, Rotational Chemical Machining (RCM) as a novel machining process is introduced. The properties such as surface roughness and residual stress as well as fatigue strength of the RCM process are evaluated, discussed and compared to the conventional turning p More
    In this study, Rotational Chemical Machining (RCM) as a novel machining process is introduced. The properties such as surface roughness and residual stress as well as fatigue strength of the RCM process are evaluated, discussed and compared to the conventional turning process. In this sense, Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) were utilized. The results show the superiority of the RCM method over the conventional method and eliminate limits of process such as low surface quality and improve fatigue strength. The Amplitude Distribution Curve has a balanced Gaussian shape in RCM indicating the balanced distribution of peaks and valleys on machined surface. Due to the absence of machining force in the RCM process, in comparison to the turning process, maximum residual stress is significantly decreased from 363Mpa to 71Mpa; surface roughness reduced from 3.1µm to 1.5 µm as well as the fatigue strength improved 20% approximately. Manuscript profile

  • Article

    2 - Comparison of ZAMAK 2 and ZAMAK 3 Alloys Produced by Powder Metallurgy Process
    Journal of Modern Processes in Manufacturing and Production , Issue 4 , Year , Summer 2021
    The predominant method to produce ZAMAK alloys is casting. But this process is not without flaws. Factors such as low melting temperature, creep stresses, aging, and dimension change over time are the main problems in ZAMAK’s casting process. We embarked on this r More
    The predominant method to produce ZAMAK alloys is casting. But this process is not without flaws. Factors such as low melting temperature, creep stresses, aging, and dimension change over time are the main problems in ZAMAK’s casting process. We embarked on this research to investigate the new production routes. In this regard, the powder metallurgy can be highlighted because of the non-occurrence of melting and non-solid-liquid phase changes. ZAMAK 2 and 3 are the most commonly used ZAMAK alloys. In this way, we study the comparison of ZAMAK 2 and 3 produced by powder metallurgy. The powder was prepared by the mechanical method. As we proceed, the effect of particle size, pressure, and sintering temperature will be investigated. The comparison was done in consideration of mechanical properties such as density, tensile strength, and hardness. The density of ZAMAK 2 obtained by the powder metallurgy method increases with increasing working pressure up to 400 MPa, but after this pressure, little change in density is observed. While in ZAMAK 3 the density increases with increasing pressure. The maximum ultimate stress obtained in ZAMAK 2 is approximately equal to 300 MPa, while, it is equal to 230 MPa for ZAMAK 3. In ZAMAK 2, we will see a 16.7% increase in density by selecting fine grains, but in Zamak 3, this enhancement is only equal to 7%, which indicates the intensive effect of particle size on the density obtained in ZAMAK 2. Manuscript profile

  • Article

    3 - Investigation on Process Parameters of Ball Screw Finishing Using Magnetic Abrasive Field
    Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering , Issue 5 , Year , Summer 2014
    Surface finishing is one of the most significant steps in industries which are engaged with surface quality. Finishing by magnetic field is a new method of surface finishing. In this process, machining is executed in mechanical way and semi-homogeneous abrasive slurry p More
    Surface finishing is one of the most significant steps in industries which are engaged with surface quality. Finishing by magnetic field is a new method of surface finishing. In this process, machining is executed in mechanical way and semi-homogeneous abrasive slurry performs finishing of surfaces. Needed force to grind surfaces is made by magnetic field. Therefor this method is considered as an advanced machining method. One of application of advanced machining methods is working in situation which conventional methods are not applicable. Nowadays helical and spiral parts have an important position in industry. This result in more attention about manufacturing and finishing of parts. This mechanism is used to finish helical ball screw in CNC machine using magnetic field created by Nd-Fe-B permanent magnet. In executed experiments four parameters which affected on surface quality were investigated. These parameters included feed rate, particles size and amount of ferromagnetic particles. The effect of most parameters was positive and caused to improve surface quality, but generally each parameter had an optimum amount in which by reaching this amount, reducing in efficiency and surface quality was observed. Also, some parameters such as cutting speed had lower effect. The initial specimen had surface roughness of 1.017 µm and the best resultant surface quality was 0.325 µm. Manuscript profile