• Home
  • Y. Rouzbehan

    List of Articles Y. Rouzbehan


  • Article

    1 - The Effect of Tannins in Grape Pomace and Oak Leaf on the <i>in vitro</i> Organic Matter Digestibility and <i>in situ</i> Disappearance of Sheep
    Rasht Branch, Islamic Azad University, Rasht, Iran , Issue 1 , Year , Winter 2015
    The effect of grape pomace (Vitis vinifera) and in oak leaf (Quercus libani) tannins by three runs of in vitro gas production on the organic matter digestibility (OMD) and in situ dry matter (DM) and crude protein (CP) disappearance were studied in four sheeps. Polyethy More
    The effect of grape pomace (Vitis vinifera) and in oak leaf (Quercus libani) tannins by three runs of in vitro gas production on the organic matter digestibility (OMD) and in situ dry matter (DM) and crude protein (CP) disappearance were studied in four sheeps. Polyethylene glycol (PEG) was used to deactivate the tannins. In vitro gas production was recorded at 2, 4, 6, 8, 12, 48, 72, 96 and 120 h of incubation. The chemical composition (g/kg DM) of grape pomace and oak leaf were 940, 940 organic matter (OM); 94, 116 crude protein (CP); 568, 515 neutral detergent fiber (NDFom); 467, 316 acid detergent fiber (ADFom); 242, 93; (lignin (sa)); 70.5, 82 total phenols (TP); 49.7, 73 total tannins (TT); 79, 5.4 condensed tannin (CT) and 40, 70 hydrolysable tannin (HT). Using grape pomace and oak leaf decreased OMD, short chain fatty acids (SCFA), insoluble but fermentable fraction (b) and fermentation rate (c) comparing to control (P<0.05). The addition of PEG increased in vitrogas production (IVGP) at all times of incubation. Kinetics of gas production, OMD and SCFA were also increased by PEG incorporation (P<0.05). The increase in gas production (%) (IGP) in grape pomace (GP) diet was higher than those in oak leaf (OL) diet. The amounts of total protozoa, Isotricha, Dasytricha, subfamily of Entodiniinae, Diplodiniinae and Ophrioscolecinae were decreased by addition of grape pomace and oak leaf. The addition of PEG increased total protozoa, subfamily of Entodiniinae, Diplodiniinae andOphrioscolecinae populations in grape pomace diet (P<0.05), but increased Isotricha, Dasytricha andsubfamily of Diplodiniinae in oak leaf diet (P<0.05). The effective degradability (ED) (g/kg DM) of DM and CP for alfalfa, grape pomace and oak leafwere (646.6, 357.7 and 362.3) and (821, 227.3 and 202), respectively based on in situ fermentation. In conclusion, using grape pomace and oak leaf have positively modified NH3-N concentration and protozoa population. Diet containing grape pomace and oak leaf had lower fermentability than the diet containing alfalfa. Supplementation of PEG in GP and OL diets improved the fermentability of these diets. Manuscript profile