• Home
  • foozieh morovat

    List of Articles foozieh morovat


  • Article

    1 - Novel Aspect of Composite Sandwich Fairing Structure Optimization of a Two Stages Launch Vehicle by Using MDO Independent Subspace Approach
    International Journal of Advanced Design and Manufacturing Technology , Issue 43 , Year , Spring 2024
    In this paper, a novel composite sandwich structure analysis of Launch Vehicle (LV) fairing is considered and proposed by a new Multidisciplinary Design Optimization (MDO) for a two-stage launch vehicle. Accordingly, “Multidisciplinary Design Optimization based on More
    In this paper, a novel composite sandwich structure analysis of Launch Vehicle (LV) fairing is considered and proposed by a new Multidisciplinary Design Optimization (MDO) for a two-stage launch vehicle. Accordingly, “Multidisciplinary Design Optimization based on Independent Subspaces” (MDOIS) is employed using the “Fixed Point Iteration” (FPI) method to achieve the best convergence at system level (SL) to segregate the disciplines. Therefore, two proposed subspaces overcome difficulties of common mentioned MDO of LVs. Hence, the first subspace is a MDO which includes propulsion, aerodynamics, weight and trajectory disciplines and the second one, includes the novel composite fairing structure optimization as the other single discipline optimization that considered as a compact problem analytically and numerically and it is one of the novelties of this work. By considering variables as propulsion, trajectory and also composite sandwich fairing structure design regarding to the variables of designing and the performing optimization process, the fairing mass has been reduced more and considerable with respect to the common two stages LVs. In addition, due to the global optimization of LVs this weight reduction caused in reduction of the total gross weight of LVs. This system engineering proves the high sufficiency of MDO in complicated designing and it can be a roadmap for the future space vehicles designers especially who want to consider the composite structure optimization in LVs. Manuscript profile

  • Article

    2 - Analytical Solution for Buckling of Composite Sandwich Truncated Conical Shells subject to Combined External Pressure and Axial Compression Load
    International Journal of Advanced Design and Manufacturing Technology , Issue 5 , Year , Autumn 2015
    Abstract: The present study deals with the buckling analysis of the laminated composite truncated conical sandwich shells with flexible core subjected to combined axial compressive load and external pressure. Higher order governing equations of the motion are presented More
    Abstract: The present study deals with the buckling analysis of the laminated composite truncated conical sandwich shells with flexible core subjected to combined axial compressive load and external pressure. Higher order governing equations of the motion are presented for conical composite sandwich shells, where they are derived from the Hamilton principle. Then, by the use of Improved Higher-order Sandwich Shell Theory, the base solutions of the governing equations are obtained in the form of power series via general recursive relations. The first order shear deformation theory is used for the face sheets and a 3D-elasticity solution of weak core is employed for the flexible core. By application of various boundary conditions such as clamped and simply-supported edges, the natural frequencies of the conical composite sandwich shell are obtained. The obtained results are compared with the numerical results from FEM analysis and good agreements are achieved. An extensive parametric study is also conducted to investigate the effect of total thickness to radius ratio on the buckling load.Keywords: Buckling, Composite, Sandwich Truncated Conical Shell, Combined Load Manuscript profile