Impact of Salinity on Growth Rate, Physiology, Elemental Composition, and NHX1 Gene Expression of Almond (Prunus dulcis) Cultivars
محورهای موضوعی : AlmondGhader Amani 1 , Mansoore Shamili 2 , Ali Imani 3 , Amir Mousavi 4 , Hamed Rezai 5
1 - Department of Horticultural Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Hormoz Research Institute, University of Hormozgan, Hormozgan, Iran
3 - Horticultural Department of Seed and Plant Improvement Institute (SPII), P.O. Karaj, Iran
4 - National Institute of Genetic Engineering and Biotechnology (NIGEB), Iran
5 - Soil and Water Research Institute Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
کلید واژه: growth, Chlorophyll, Photosynthesis, Micro elements, macro elements, NHX1 gene expression, Osmolites,
چکیده مقاله :
In almonds (Prunus dulcis), selecting salt-tolerant rootstocks and genotypes is an appropriate breeding strategy. In the present research, we grafted two commercial almond cultivars (‘Sahand’ and ‘TS3’) on the ‘GF677’ rootstock. Then, we monitored the impact of salinity (0.5, 6.5, and 8.5 dS m-1) on the morphological, physiological, and molecular characteristics of the Sahand and TS3 cultivars. The photosynthetic rate, chlorophyll (a, b and total) content, and carotenoid content decreased with increasing salinity levels in both cultivars, with the least decrease observed in TS3. Under a salinity level of 8.5 dS/m, Sahand exhibited the lowest growth (8.9 cm), leaf area (5412.5 mm2), Chla, Chlb, Chltotal and carotenoid contents (0.58, 0.15, 0.74 and 0.31 mg g-1 FW, respectively). Additionally, Sahand had a Fm/Fv (0.75), N content (1.33%) and Ca, B, Mg, S, Fe and Zn values of 1654.55, 1.64, 395.28, 168.6, 10.35 and 3.05 mg L-1, respectively. Furthermore, Sahand exhibited the highest MDA level (25.17 nmol g-1FW), TFC (2.95 mg GA g-1FW), Na content (649.84 mg L-1) and Cl content (3.52%). the lowest TFC (1.75 mg GA g-1FW) and the highest NHX1 expression, photosynthesis rate (5.65 μmol m-2 s-1), gs (0.1 mol m-1 s-1) transpiration rate (6.08 mmol m-1 s-1), Ca, S and B content (1903.63, 196.9 and 2.09 mg L-1, respectively) were belonged to TS3 under 0.5 dS/m salinity. Higher levels of Mg and Fe in the TS3 cultivar resulted in the stablization of photosynthetic pigments. Compared to Sahand, TS3 had a higher nitrogen content, and its greater NHX1 expression was a molecular confirmation of its salt tolerance.
In almonds (Prunus dulcis), selecting salt-tolerant rootstocks and genotypes is an appropriate breeding strategy. In the present research, we grafted two commercial almond cultivars (‘Sahand’ and ‘TS3’) on the ‘GF677’ rootstock. Then, we monitored the impact of salinity (0.5, 6.5, and 8.5 dS m-1) on the morphological, physiological, and molecular characteristics of the Sahand and TS3 cultivars. The photosynthetic rate, chlorophyll (a, b and total) content, and carotenoid content decreased with increasing salinity levels in both cultivars, with the least decrease observed in TS3. Under a salinity level of 8.5 dS/m, Sahand exhibited the lowest growth (8.9 cm), leaf area (5412.5 mm2), Chla, Chlb, Chltotal and carotenoid contents (0.58, 0.15, 0.74 and 0.31 mg g-1 FW, respectively). Additionally, Sahand had a Fm/Fv (0.75), N content (1.33%) and Ca, B, Mg, S, Fe and Zn values of 1654.55, 1.64, 395.28, 168.6, 10.35 and 3.05 mg L-1, respectively. Furthermore, Sahand exhibited the highest MDA level (25.17 nmol g-1FW), TFC (2.95 mg GA g-1FW), Na content (649.84 mg L-1) and Cl content (3.52%). the lowest TFC (1.75 mg GA g-1FW) and the highest NHX1 expression, photosynthesis rate (5.65 μmol m-2 s-1), gs (0.1 mol m-1 s-1) transpiration rate (6.08 mmol m-1 s-1), Ca, S and B content (1903.63, 196.9 and 2.09 mg L-1, respectively) were belonged to TS3 under 0.5 dS/m salinity. Higher levels of Mg and Fe in the TS3 cultivar resulted in the stablization of photosynthetic pigments. Compared to Sahand, TS3 had a higher nitrogen content, and its greater NHX1 expression was a molecular confirmation of its salt tolerance.
Abdelhamid M, Eldardiry E, El-Hady MA (2013) Ameliorate salinity effect through sulphur application and its effect on some soil and plant characters under different water quantities. Agricultural Sciences. 4(1), 39–47. doi: 10.4236/as.2013.41007
Adish M, Fekri M, Hokmabadi H (2010) Response of Badami‐zarand pistachio rootstock to salinity stress. Journal of Nuts. 1(1), 4-14.
Alshaal T, El-Ramady H, Al-Saeedi AH, Shalaby T, Elsakhawy T, Omara AED, Gad A, Hamad E, El-Ghamry A, Mosa A, Amer M (2017) The rhizosphere and plant nutrition under climate change. In: Naeem M, Ansari A, Gill S (eds) Essential plant nutrients. pp. 275-308.
Amiri A, Baninasab B, Ghobadi C, Khoshgoftarmanesh AH (2016) Zinc soil application enhance photosynthetic capacity and antioxidant enzyme activities in almond seedlings affected by salinity stress. Photosynthetica. 54, 1–18. Doi: org/10.1007/s11099-016-0078-0
Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Molecular Plant. 2(1), 3–12. Doi: 10.1093/mp/ssn094.
Ansari A, Gharaghani A (2019) A comparative study of genetic diversity, heritability and inter-relationships of tree and nut attributes between Prunus scoparia and P. elaeagnifolia using multivariate statistical analysis. International Journal of Horticultural Science and Technology. 6(1), 137-150.
Archana Pandey N, Verma P (2017) Boron deficiency and toxicity and their tolerance in plants: a review. Journal of Global Biosciences. 6, 4958–4965.
Ashraf M, Ahmad S (2000) Influence of sodium chloride on ion accumulation, yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.). Fruit Crop Research. 66, 115–127. doi: org/10.1016/S0378-4290(00)00064-2
Ashraf MPJC, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Science. 166(1), 316. doi: 10.1.1.566.6053&rep=rep1&type=pdf
Ashraf MHPJC, Harris PJ (2013) Photosynthesis under stressful environments: an overview. Photosynthetica. 51(2), 163–190. DOI: 10.1007/s11099-013-0021-6
Badran AM, Savin IY (2019) Influence of salinity on vegetative growth and photosynthetic pigments of bitter almond rootstock. Rudun Journal of Agronomy and Animal Industries 14(4), 319—328.
Baker NR, Rosenqvist (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany. 55(403), 1607–1621.
Balfagón D, Terán F, Oliveira TD, Santa‐Catarina C, Gómez‐Cadenas A (2021) Citrus rootstocks modify antioxidant system under drought and heat stress combination. Plant Cell. Report 1–10. doi.org/10.1007/s00299-021-02744-y
Bassil E, Coku A, Blumwald E (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. Journal of Experimental Botany. 63(16), 5727–5740. doi.org/10.1093/jxb/ers250
Bastam N, Baninasa B, Ghobadi C (2013) Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Plant Growth Regulation. 69 (3), 275–284. doi.org/10.1007/s10725-012-9770-7.
Behzadi Rad P, Roozban MR, Karimi S, Ghahremani R, Vahdati K (2021) Osmolyte accumulation and sodium compartmentation has a key role in salinity tolerance of pistachios rootstocks. Agriculture. 11(8), 708.
Benton J (2001) Laboratory guide for conducting soil tests and plant analysis. Boca Raton, Fl.CRC Press. pp. 384.
Bhantana P, Lazarovitch N (2010) Evapotranspiration, crop coefficient and growth of two young pomegranates (Punica granatum L.) varieties under salt stress. Agriculture Water Manangment. 97(5), 715–722.
Brychkova G, Alikulov Z, Fluhr R, Sagi M (2008) A critical role for ureides in dark and senescence-induced purine remobilization is unmasked in the Atxdh1 Arabidopsis mutant. Plant Journal. 54, 496–509. DOI: 10.1111/j.1365-313X.2008.03440.x
Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen spices. New Phytol. 146, 185–205. Doi: abs/10.1046/j.1469-8137.2000.00630.x
Carillo P (2018) GABA shunt in durum wheat. Frontiers in Plant Science. 9, 100. Doi: 10.3389/fpls.2018.00100
Chakraborty K, Basak N, Bhaduri D, Ray S, Vijayan J, Chattopadhyay K, Sarkar RK (2018) Ionic basis of salt tolerance in plants: nutrient homeostasis and oxidative stress tolerance. In: Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B. (eds) Plant nutrients and abiotic stress tolerance. Springer, Singapore. pp.325-362.
Chakraborty K, Bose J, Shabala L, Shabala S (2016) Difference in root K+ retention ability and reduced sensitivity of K+ -permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species. Journal of Experimental Botany. 67, 4611–4625. Doi:10.1093/jxb/erw236
Chapman HD, Pratt PF (1961) Methods of Analysis for Soils. Plants and Water. 93(1) , 68-70.
Chen YF, Wang Y, Wu WH (2008) Membrane transporters for nitrogen, phosphate and potassium uptake in plants. Journal of Integrated Plant Biology. 50, 835–848. Doi: 10.1111/j.1744-7909.2008.00707.x
Corredor E, Romßn M, Garcφa E, Perera E, Ars P, Naranjo T (2004) Physical mapping of DNA genes enables to establish the karyotype of almond. Annal Aplied Biology. 144, 219–222. Doi: 10.1111/j.1744-7348.2004.tb00336.x
Dejampour J, Aliasgarzad N, Zeinalabedini M, Rohani Niya M, Majidi Hervan E (2012) Evaluation of salt tolerance in almond [Prunus dulcis (L.) Batsch] rootstocks. African Journal of Biotechnology. 11, 11907-11912. DOI: 10.5897/AJB11.2996
Devi BSR, Kim YJ, Selvi SK, Gayathri S, Altanzul K, Parvin S, Yang DU, Lee OR, Lee S, Yang DC (2012) Influence of potassium nitrate on antioxidant level and secondary metabolite genes under cold stress in Panax ginseng. Russion Journal of Plant Physiology. 59, 318–325. Doi: 10.1134/S1021443712030041
Doll DA, Duncan RA, Hendricks L, Micke W (2014) Performance of six almond rootstocks with long-term exposure to sodium and chloride. Acta Horticulturae. 1028, 273-278. Doi: 10.17660/ActaHortic.2014.1028.44
Eca GF, Brito GB, Barbosa IS, Korn VMGAH, Hatje V (2014) Microwave-Assisted Acid Digestion Procedure for Trace Elements Determination in Polychaete Chaetopterus Variopedatus. Revista Virtual Quim. 6(4), 1047–1061.
Eskandari S, Majidazar M (2009) Introduction of new hybrid varieties of almond (Prunus amygdalus Batsch) for almond producing regions of Iran. World Applied Sciences Journal. 6(3), 323–330.
Fan W, Zhang M, Zhang H, Zhang P (2012) Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One. 7 (5), 37344.
FAO (2002) Crops and drops. Making the best use of water for agriculture. Food and Agriculture Organization of the United Nations, Rome, Italy. pp. 1-22
FAO STAT (2020) FAO Statistics Database on the World Wide Web (n.d.). Retrieved from. https://www.fao.org/faostat/en/#data/QCL and https://www.fao.org/faostat/en/#compare
FAO STAT (2021) FAO statistics database on the world wide web (n. d.). https://www.fao.org/faostat/en/#data/QCL (https://www. fao.org/faostat/en/#compare). Accessed the 31 of July 2023.
Feng L, Ding H, Wang J, Wang M, Xia W, Zang S, Sheng L (2015) Molecular cloning and expression analysis of RrNHX1 and RrVHA-c genes related to salt tolerance in wild Rosa rugosa. Saudi Journal of Biological Sciences. 22(4), 417–423. Doi:10.1016/j.sjbs.2015.01.008
Fernandez-Ballester G, Garcia–Sanchez F, Cerda A, Martinez V (2003) Tolerance of citrus rootstock seedling to saline stress based on their ability to regulate ion uptake and transport. Tree Physiology. 23, 265–271. Doi: 10.1093/treephys/23.4.265
Forni C, Daiana D, Bernard RG (2017) Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil. 410, 335–356. Doi.org/10.1007/s11104-016-3007-x
Gaber MA (2010) Antioxidative defense under salt stress. Plant Signal Behaviour 5, 369–374. Doi: 10.4161/psb.5.4.10873
Gharaghani A, Mohammadi Javarzaria A, Vahdati K (2018) Kaolin particle film alleviates adverse eects of light and heat stresses and improves nut and kernel quality in Persian walnut. Scientia Horticulturae. 239, 35–40.
Grasselly C, Duval H (1997). L’amandier. CTIFL, Paris.
Grattan SR, Grieve CM (1999) Mineral nutrient acquisition and response by plants grown in saline environments. In: Pessarakli M (Ed.), Handbook of Plant and Crop Stress. Marcel Dekker, New York. pp. 203–229.
Grieve CM, Grattan SR (1983) Rapid assay for determination of water-soluble quaternary ammonium compounds. Plant and Soil. 70(2), 303–307. Doi.org/10.1007/BF02374789
Hadi MR, Karimi N (2012) The role of calcium in plants’ salt tolerance. Journal of Plant Nutritient. 35, 2037–2054. Doi: abs/10.1080/01904167.2012.717158
Hansch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opininion in Plant Biology. 12, 259–266. Doi: 10.1016/j.pbi.2009.05.006
Hasanuzzaman M, Bhuyan MHMB, Nahar K, Hossain MS, Mahmud JA, Hossen MS, Masud AAC, Moumita, M Fujita (2018) Potassium: A Vital Regulator of Plant Responses and Tolerance to Abiotic Stresses. Agronomy. 8, 31. Doi: 10.3390/agronomy8030031
Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B (2018) Plant nutrients and abiotic stress tolerance. Singapore: Springer. pp, 590.
He Y, Zhu Z, Yang J, Ni X, Zhu B (2009) Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental Experimental Botany. 66, 270–278. Doi:10.1016/j.envexpbot.2009.02.007
Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 125 (1), 189–198. Doi: 10.1016/0003-9861(68)90654-1
Helaly MN, El-Sheery N, El-Hoseiny H, Rastogi A, Kalaji H (2018) Impact of treated wastewater and salicylic acid on physiological performance, malformation and yield of two mango cultivars. Scientia Horticulturae 233, 159–177. Doi: 10.1016/j.scienta.2018.01.001
Huang Y, Tang R, Cao Q, Bie Z (2009) Improving the fruit yield and quality of cucumber by grafting onto the salt tolerant rootstock under NaCl stress. Scientia Horticulturae. 122(1), 26–31. Doi: 10.1016/j.scienta.2009.04.004
Hussin S, Geissler N, Koyro HW (2013) Effect of NaCl salinity on (Atriplex nummularia L.) with special emphasis on carbon and nitrogen metabolism. Journal of Acta Physiolgy Plant 35, 1025–1038. Doi: 10.1007/s11738-012-1141-5.
Imani A, Amani G, Shamili M, Mousavi M, Rezai H, Rasouli M, José Martínez- García P (2021) Diversity and broad sense heritability of phenotypic characteristic in almond cultivars and genotypes. International Journal of Horticultural Science and Technology. 8(3), 281-289.
Isaakidis A, Sotiropoulos T, Almaliotis D, Therios I, Stylianidis D (2004) Response to severe water stress of the almond (Prunus amygdalus)’Ferragnès’ grafted on eight rootstocks. New Zealand Journal of Crop and Horticultural Science. 32(4), 355–362. Doi: abs/10.1080/01140671.2004.9514316
Jin ZM, Wang CH, Liu ZP, Gong WJ (2007) Physiological and ecological characters studies on Aloe vera under soil salinity and seawater irrigation. Process Biochemestry. 42, 710–714. Doi:10.1016/j.procbio.2006.11.002
Karimi S, Yadollahi A, Arzani K, Imani A, Aghaalikhani M (2015) Gas-exchange response of almond genotypes to water stress. Photosynthetica. 53 (1), 29–34. Doi: 10.1007/s11099-015-0070-0
Karimi Z, Firouzi M, Dadmehr M, Javad-Mousavi SA, Bagheriani N, Sadeghpour O (2021) Almond as a nutraceutical and therapeutic agent in Persian medicine and modern phytotherapy: A narrative review. Phytotherapy Research. 1–16. Doi: 10.1002/ptr.7006
Khayyat M, Tehranifar A, Davarynejad GH, Sayyari-Zahan MH (2014) Vegetative growth, compatible solute accumulation, ion partitioning and chlorophyll fluorescence of Malase-e-Saveh and Shishe-kab pomegranate in response to salinity stress. Photosenthetica. 5, 301–312. Doi: 10.1007/s11099-014-0034-9
Kester DE, Gradziel TM (1996) Almonds (Prunus) In: Moore JN, Janick J (eds) Fruit Breeding. Wiley & Sons, New York, USA. pp.1–97
Koshiba T, Saito H, Ono N, Yamarnoto N, Sato M (1996) Purification and properties of flavin-and molybdenum containing aldehyde oxidase from coleoptile of maize. Plant Biology. 110, 781–789. Doi:.org/10.1104/pp.110.3.781
Krasilnikoff G, Gahoonia T, Nielsen NE (2003) Variation in phosphorus uptake efficiency by genotypes of cowpea (Vigna unguiculata) due to differences in root and root hair length and induced rhizosphere processes. Plant and Soil. 251, 83–91. Doi: 10.1023/A:1022934213879
Kusunoki M (2007) Mono-manganese mechanism of the photosystem II water splitting reaction by a unique Mn4Ca cluster. Biochim Biophys Acta. 1767, 484–492. Doi: 10.1016/j.bbabio.2007.03.012
Lattanzio V (2013) Phenolic Compounds: Introduction 50. Natural Products 1543–1580. Doi: 10.1007/978-3-642-22144-6_57
Li H, Ahammed GJ, Zhou G, Xia X, Zhou J, Shi K, Yu J, Zhou Y (2016) Unraveling main limiting sites of photosynthesis under below and above-ground heat stress in cucumber and the alleviatory role of Lufa rootstock. Front Plant Science. 7, 746. Doi: 10.3389/fpls.2016.00746
Li X, Luo M, Hei C, Song G (2019) Quantitative evaluation of debond in concrete-filled steel tubular member (CFSTM) using piezoceramic transducers and ultrasonic head wave amplitude. Smart Materials and Structures. 28(7), 075033. DOI:10.1088/1361-665X/ab1f27
Lichtenthaler H, Wellburn A (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions. 603, 591–592.
Livak KJ, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408. Doi: 10.1006/meth.2001.1262
Lotfi N, Soleimani A, Vahdati K, Çakmakçı R. (2019) Comprehensive biochemical insights into the seed germination of walnut under drought stress. Scientia Horticulturae 250, 329-43.
Lotfi N, Vahdati K, Kholdebarin B, Ashrafi EN (2009) Germination, mineral composition, and ion uptake in walnut under salinity conditions. HortScience. 44(5), 1352–1357.
Luachli A, Wteneke J (1979) Studies on growth and distribution of Na, K and CL soybean varieties differing in salt lolerance. Z. pflanenernacher. Bodenkd. 142, 3–13. Doi: 10.1002/jpln.19791420103
Lutts S, Kinet J, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annal Botany. 78, 389–398.
Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics. 444 (2), 139–158. Doi: 10.1016/j.abb.2005.10.018
Marschner P (2012) Mineral nutrition of higher plants. Academic Press, Elsevier, Waltham, MA, USA. pp. 672.
Massai R, Remorini D, Tattini M (2004) Gas exchange, water relations and osmotic adjustment in two /rootstock combinations of prunus under various salinity concentrations. Plant and Soil. 259, 153–162. Doi: 10.1023/B:PLSO.0000020954.71828.13
Melgar JC, Syvertsen JP, Martinez V, Garcia-sanchez F (2008) Leaf gas exchange, water relations, nutrient content and growth in citrus and olive seedlings under salinity. Biologia Plantarum 52, 385–390. Doi: 10.1007/s10535-008-0081-9
Meloni DA, Gulotta MR, Martínez CA (2008) Salinity tolerance in Schinopsis quebracho colorado: Seed germination, growth, ion relations and metabolic responses. Journal of Arid Environments. 72 (10), 1785–1792.
Doi: 10.1016/j.jaridenv.2008.05.003
Mohammadi H, Imani A, Abdosi V, Asghari MR, Talaei AR (2020) Exogenous salicylic acid mitigates adverse effects of salinity on some photosynthesis-related parameters of almond. Journal of Agrculture Science and Technology 22(2), 519–534.
Momenpour A, Imani A, Bakhshi D, Akbarpour E (2018) Evaluation of salinity tolerance of some selected almond genotypes budded on GF677 rootstock. International Journal of Fruit Science. 18(4), 410–435. Doi: 10.1080/15538362.2018.1468850
Montaium R, Hening H, Brown PH (1994) The relative tolerance of six Prunus rootstocks to boron and salinity. Journal of the American Society for Horticultural Science. 6, 1169–1175.
Moya JL, Primo-Millo E, Talon M (1999) Morphological factors determining salt tolerance in citrus seedlings: the shoot to root ratio modulates passive root in roots of grafted and non-grafted tomato plants. Plant Growth Regulation. 56, 7–19. Doi: 10.1046/j.1365-3040.1999.00495.x
Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environmrnt. 25, 239–250. Doi: 10.1046/j.0016-8025.2001.00808.x
Munns R, Tester M (2008) Mechanisms of Salinity Tolerance. Annual Review of Plant Biology. 59, 651–681. Doi: 10.1146/annurev.arplant.59.032607.092911
Murillo-Amador B, Jones HG, Kaya C, Aguilar RL, Garcφa-Hernßndez JL, Troyo-DiΘguez E, Vila-Serrano NY, Rueda-Puente E (2006) Effects of foliar application of calcium nitrate on growth and physiological attributes of cowpea (Vigna unguiculata L. Walp.) grown under salt stress. Environmental Experimental Botany. 58, 188–196. Doi: 10.1016/j.envexpbot.2005.08.003
Murkute AA, Sharma S, Singh SK (2005) Citrus in term of soil and water salinity: a review. Journal of Science Industrial Research. 64, 393–402.
Najafian SHO, Rahemi M, Tavallali V (2008) Growth and chemical composition of GF677 (Prunus amygdalus ´ prunus persica) influenced by salinity levels of irrigation water. Asian Journal of Plant Science. 7, 309313. Doi: 10.3923/ajps.2008.309.313
Nass R, Cunningham KW, Rao R (1997) Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+- ATPase. Journal of Biological Chemistry. 272, 26145–26152. Doi: 10.1074/jbc.272.42.26145
Necleous D, Vasilakakis M (2007) Effects of NaCl stress on red raspberry (Rubus idaeus L. ‘Autumn Bliss’). Scientia Horticulturae. 112, 282–289. Doi: 10.1016/j.scienta.2006.12.025.
Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+⁄H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. Federation of European Biochemical Societies Letters 532L 279–282. Doi: 10.1016/s0014-5793(02)03679-7
Osman AS, Rady MM (2012) Ameliorative effects of sulphur and humic acid on the growth, anti-oxidant levels, and yields of and pea (Pisum sativum L.) plants grown in reclaimed saline soil. Journal of Horticulture Science Biotechnology. 87, 626–632. Doi: 10.1080/14620316.2012.11512922
Pandey N, Pathak GC, Singh AK, Sharma CP (2002) Enzymic changes in response to zinc nutrition. Journal of Plant Physiology. 151, 1151–1153. Doi: 10.1078/0176-1617-00674
Parida AK, Dasa AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicology Environment Safety. 60, 354–349. Doi: 10.1016/j.ecoenv.2004.06.010
Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research. 22 (6), 4056–4075. Doi: 10.1007/s11356-014-3739-1
Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P (2011) Expression of an Arabidopsis vacuolar H+ pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnology Journal. 9(1), 88–99. Doi: 10.1111/j.1467-7652.2010.00535.x
Pitt T, Stevens R, Cox JW (2018) Assessing the salt sensitivity of mature almond trees by replacing the resident saline irrigation with fresh water at different growth stages. Acta Horticulture. 1219, 251-258.
Rahmani A, Sardabi H, Daneshvar A (2006) Responses of Cultivated and Wild Almonds to Salinity. Acta Horticulture. 726, 265-272. Doi: 10.17660/ActaHortic.2018.1219.39
Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan AK (2011) Developing stress tolerant plants through in vitro selection-An overview of the recent progress. Environmental Experimental Botany. 71, 89–98.Doi:10.1016/j.envexpbot.2010.10.021
Ranjbar A (2006) Using chlorophyll fluorescence to study photosynthetic activities in sweet almond (prunus dulcis mill.) in response to salinity stress. Acta Horticulturae 726, 343-349. Doi: 10.17660/ActaHortic.2006.726.55
Reza S, Heidari R, Zare S, Norastehnia A (2006) Antioxidant response of two salt‐stressed barley varieties in the presence or absence of exogenous proline. Geneteic Appllied Plant Physiology 32, 233251. Doi.org/10.3389/fpls.2020.559876
Robatjazi R, Roshandel P, Hooshmand S (2020) Benefits of silicon nutrition on growth, physiological and phytochemical attributes of basil upon salinity stress. International Journal of Horticultural Science and Technology. 7(1), 37-50.
Rouphael Y, Venema JH, Edelstein M, Savvas D, Colla G, Ntatsi G, Ben-Hur M, Kumar P, Schwarz D (2017) Grafting as a tool for tolerance of abiotic stress. CAb International, Oxford Press, U.K. 171–215.
Rubio-Piña JA, Zapata-Pérez O (2011) Isolation of total RNA from tissues rich in polyphenols and polysaccharides of mangrove plants. Electronic Journal of Biotechnology 14(5), 11–11. Doi: 10.2225/vol14-issue5-fulltext-8
Salama ZA, El-Fouly MM, Lazova G, Popova LP (2006) Carboxylating enzymes and carbonic anhydrase functions were suppressed by zinc deficiency in maize and chickpea plants. Acta Physiology Plantearum. 28, 445–451. Doi:10.1007/BF02706627
Sandhu D, Kaundal A, Acharya BR, Forest T, Pudussery MV, Liu X, Ferreira JFS, Suarez DL (2020) Linking diverse salinity responses of 14 almond rootstocks with physiological, biochemical, and genetic determinants. Scientific Reports 10: 1-13. Doi: 10.1038/s41598-020-78036-4
Shao Y, Cheng Y, Pang H, Chang M, He F, Wang M, Davis D J, Zhang S, Betz O, Fleck C, Dai T, Madahhosseini Sh, Wilkop T, Jernstedt J, Drakakaki G (2021) Investigation of Salt Tolerance Mechanisms Across a Root Developmental Gradient in Almond Rootstocks. Frontiers in Plant Science. Article 595055. Doi: 10.3389/fpls.2020.595055
Shabala S, Pottosin I (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiologia Plantarum. 151 (3), 257–279. Doi: 10.1111/ppl.12165
Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. BioMetals. 15, 309–323. Doi: 10.1023/A:1016091118585
Shibli RA, Mohammad M. Abu-Ein A, Shatnawi M (2000) Growth and micronutrient acquisition of some apple varieties in response to gradual in vitro induced salinity. Journal of Plant Nutritient. 23, 1209–1215. Doi: 10.1080/01904160009382094
Shibli RA, Shatnawi MA, Swaidat IQ (2003) Growth, osmotic adjustment, and nutrient acquisition of bitter almond under induced sodium chloride salinity in vitro. Communications in Soil Science and Plant Analysis. 34 (13 & 14): 1969–1979 Doi:10.1081/CSS-120023231
Singh S, Prasad SM (2014) Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: mechanism of toxicity amelioration by kinetin. Scientia Horticulturae. 176, 1–10. Doi: 10.1016/j.scienta.2014.06.022
Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology. 299, 152–178. Doi: 10.1016/S0076-6879(99)99017-1
Soliman G M, Farhan SS (2021) Evaluation of salinity tolerance on new selected Almond × Peach hybrid rootstocks. Arab University Journal of Agricultural Science. 29(1), 419 – 436. Doi: 10.21608/AJS.2021.51647.1307
Sorkheh K, Shiran B, Rouhi V, Khodambashi M, Sofo A (2012) Salt stress induction of some key antioxidant enzymes and metabolites in eight Iranian wild almond species. Acta Physiologiae Plantarum. 34(1), 203–213. Doi.org/10.1007/s11738-011-0819-4
Stahl W, Sies H (2005) Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 1740(2), 101–107. Doi: 10.1016/j.bbadis.2004.12.006
Tabatabaei SJ (2006) Effects of salinity and N on the growth, photosynthesis and N status of olive (Olea europaea L.) trees. Scientia Horticulturae. 108(4), 432–438. Doi: 10.1016/j.scienta.2006.02.016
Tattini M (1990) Effect of increasing nitrogen concentration on growth and nitrogen uptake of container-grown peach and olive. In: van Beusichem, M.L. (Ed.), Plant Nutrition-Physiology and Application. Kluwer Academic Publishers, Dordrecht, The Netherlands. pp.515–518.
Tattini M, Gucci R, Coradeschi MA, Ponzio C, Everard JD (1995) Growth, gas exchange and ion content in Olea europaea plants during salinity stress and subsequent relief. Physiologia Plantarum. 95(2), 203–210. Doi: abs/10.1111/j.1399-3054.1995.tb00828.x
Tester M, Dovenport R (2003) Na+ tolerance and Na+ transport in higher plants. Annals of Botany. 91, 503–527. Doi: 10.1093/aob/mcg058
Anonymus 2022. The Global Risks Report 17th edn. World Economic Forum, Geneva, Switzerland. https://www.weforum.org/reports/global-risks-report-2022.
Tuna AL, Kaya C, Ashraf M, Altunlu H, Yokas I, Yagmur B (2007) The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environmental Experimental Botany. 59, 173–178. Doi: 10.1016/j.envexpbot.2005.12.007
Tunuturk M, Tuncturk R, Yildirim B, Ciftci V (2011) Effect of salinity stress on plant fresh weight and nutrient composition of some Canola (Brassica napus L.) cultivars. African Journal of Biotechnology. 10(10), 1827–1832.Doi: 10.5897/AJB10.1618
Vahdati K, Bavani AR, Khosh-Khui M, Fakour P, Sarikhani S. (2019) Applying the AOGCM-AR5 models to the assessments of land suitability for walnut cultivation in response to climate change: A case study of Iran. PloS ONE. 14(6). e0218725
Vahdati K, Sarikhani S, Arab MM, Leslie CA, Dandekar AM, Aletà N, Bielsa B, Gradziel TM, Montesinos Á, Rubio-Cabetas MJ, Sideli GM, Serdar Ü, Akyüz B, Beccaro GL, Donno D, Rovira M, Ferguson L, Akbari M, Sheikhi A, Sestras AF, Kafkas S, Paizila A, Roozban MR, Kaur A, Panta S, Zhang L, Sestras RE, Mehlenbacher S (2021) Advances in rootstock breeding of nut trees: objectives and strategies. Plants 10 (11), 2234.
Ventura Y, Wuddineh WA, Ephrath Y (2010) Molybdenum as an essential element for improving total yield in seawater-grown Salicornia europaea L. Scientia Horticulturae. 126, 395–401. Doi: 10.1016/j.scienta.2010.07.015
Volkov V, Amtmann A (2006) Thellungiella halophila, a salt‐tolerant relative of Arabidopsis thaliana, has specific root ion‐channel features supporting K+/Na+ homeostasis under salinity stress. The Plant Journal. 48(3), 342–353. Doi:10.1046/j.0016-8025.2003.01116.x
Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. International Journal of Moleculrat Science. 14, 7370–7390. Doi: 10.3390/ijms14047370
Wang XM, Huang T, Wu WL, Li WL, Zhu H (2016). Effects of salt stress on photosynthetic characteristics of beach plum and other Prunus species. Acta Horticulture. 1112, 233-240 DOI: 10.17660/ActaHortic.2016.1112.32
Wei R, Zimmermann W (2017) Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate. Microbial Biotechnology. 10(6), 1302–1307. Doi: 10.1111/1751-7915.12714
White PJ, Broadley MR (2001) Chloride in Soils and its Uptake and Movement within the Plant: A Review. Annual Botany. 88(6), 967–988. Doi: 10.1006/anbo.2001.1540
Yang Y, Iji PA, Kocher A, Mikkelsen LL, Choct M (2008) Effects of xylanase on groth and gut development of broiler chickens given a wheat-based diet. Asian-Australasian Journal of Animal Sciences. 21(11), 1659–1664. Doi: 10.5713/ajas.2008.80074
Yin XY, Yang A.F, Zhang KW, Zhang JR (2004) Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Botanica Sinica 7, 12–20.
Yu Q, Baluska F, Jasper F, Menzel D, Goldbach E (2002) Short term boron deprivation enhances levels of cytoskeletal proteins in maize, but not in zucchini, root apices. Physiologia Plantearum 117, 270–278. Doi: 10.1034/j.1399-3054.2003.00029.x.
Zaratavaldez JL, Muhammad S, Saa S, Lampinen BD, Brown PH (2015) Light interception, leaf nitrogen and yield prediction in almonds. A case study. Europian Journal of Agriculture. 66, 17. Doi: 10.1016/j.eja.2015.02.004.
Zhang J, Lü F, Shao L, He P (2014) The use of biochar-amended composting to improve the humification and degradation of sewage sludge. Bioresource Technology. 168, 252–258. Doi:10.1016/j.biortech.2014.02.080.
Zhu J, Bie ZL, Huang Y, Han XX (2008) Effect of grafting on the growth and ion concentrations of cucumber seedlings under NaCl stress. Soil Science and Plant Nutrition. 54, 895–902. Doi: 10.1111/j.1747-0765.2008.00306.x
Zrig A, Ben Mohamed H, Tounekti T, Ennajeh M, Valero D, Khemira H (2015a) A comparative study of salt tolerance of three almond rootstocks: contribution of organic and inorganic solutes to osmotic adjustment. Journal of Agricultural Science Technology. 17, 675-689.
Zrig A, Mohamed HB, Tounekti T, Ahmed SO, Khemira H (2015b) Differential responses of antioxidant enzymes in salt-stressed almond tree grown under sun and shade conditions. Journal of Plant Sciences and Research. 2, 117-119.
Zrig A, Mohamed HB, Tounekti T, Khemira H, Serrano M, Valero D, Vadel AM (2016) Effect of rootstock on salinity tolerance of sweet almond (cv. Mazzetto). South African Journal of Botany. 102, 50-59. Doi: 10.1016/j.sajb.2015.09.001
Zrig A, Tounekti T, Vadel AM, BenMohamed H, Valero D, Serrano M, Chtara C, Khemira H (2011) Possible involvement of polyphenols and polyamines in salt tolerance of almond rootstocks. Plant Physiology and Biochemistry. 49, 1313–1320. Doi: 10.1016/j.plaphy.2011.08.009