Advancing biomedical, food, and industrial applications through carbon nanomaterials: current status and future perspectives
محورهای موضوعی : فصلنامه شبیه سازی و تحلیل تکنولوژی های نوین در مهندسی مکانیکA. Abdollahpour 1 , Ayda Ranjbar 2 , Azadeh Asefnejad 3 , Bahareh Kamyab Moghadas 4 , Yashar Ghaffari 5 , David Otasowie Ogbemudia 6 , Mehid Taheri 7
1 - Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2 - Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Department of Biomedical Engineering
4 - Department of Applied Researches, Chemical, Petroleum & Polymer Engineering Research Center, Shiraz Branch, Islamic Azad University, Shiraz, Iran
5 - Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
6 - Department of Energy Systems Engineering, Cyprus International University, Nicosia, Mersin 10, Turkey
7 - Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran
کلید واژه: Industry, Graphene, CNTs, Cellular compatibility, Biomaterials applications,
چکیده مقاله :
Carbon nanomaterials, such as carbon nanotubes (CNTs) and graphene, possess remarkable mechanical, electrical, and biological properties, making them promising enhancers in biological materials. Their nanoscale dimensions and large surface area enable targeted interactions with living organisms. However, concerns regarding their cellular compatibility in clinical orthopedic applications persist. To address this, ongoing investigations are examining the interaction of carbon nanomaterials with biological systems, including proteins, nucleic acids, and human cells, to assess their behavior in laboratory and in vivo settings. Studies have demonstrated that composites reinforced with CNTs and graphene enhance the adhesion of osteoblast cells, leading to enhanced bone tissue formation. This potential is expected to drive advancements in reconstructive medicine and bone tissue engineering. Additionally, this article presents current advancements and future research directions in developing CNT and graphene-reinforced implants for bone tissue engineering.
Carbon nanomaterials, such as carbon nanotubes (CNTs) and graphene, possess remarkable mechanical, electrical, and biological properties, making them promising enhancers in biological materials. Their nanoscale dimensions and large surface area enable targeted interactions with living organisms. However, concerns regarding their cellular compatibility in clinical orthopedic applications persist. To address this, ongoing investigations are examining the interaction of carbon nanomaterials with biological systems, including proteins, nucleic acids, and human cells, to assess their behavior in laboratory and in vivo settings. Studies have demonstrated that composites reinforced with CNTs and graphene enhance the adhesion of osteoblast cells, leading to enhanced bone tissue formation. This potential is expected to drive advancements in reconstructive medicine and bone tissue engineering. Additionally, this article presents current advancements and future research directions in developing CNT and graphene-reinforced implants for bone tissue engineering.
[1] Sahithi, K., Swetha, M., Ramasamy, K., Srinivasan, N., & Selvamurugan, N. (2010). Polymeric composites containing carbon nanotubes for bone tissue engineering. International journal of biological macromolecules, 46(3), 281-283.
[2] Karimianmanesh, M., Azizifard, E., Javidanbashiz, N., Latifi, M., Ghorbani, A., & Shahriari, S. (2021). Feasibility study of mechanical properties of alginates for neuroscience application using finite element method. Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, 13(3), 53-62.
[3] Alibabaei, S., Kasiri-Asgarani, M., & Bakhsheshi-Rad, H. (2019). Investigating the effect of solid solution treatment on the corrosion properties of biodegradable Mg-Zn-RE-xCa (x = 0, 2.5) alloy. Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, 12(4), 67-80.
[4] Malekipour Esfahani, M. H., Sharifinezhad, N., Hemati, M., & Gholami, A. M. (2021). Evaluation of mechanical properties of bioglass materials for dentistry application. Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, 13(4), 19-29.
[5] Heydari, S., Sadat Mirinejad, M., Malekipour Esfahani, M. H., Karimian, F., Attaeyan, A., & Latifi, M. (2021). A brief review on titanium alloy for dental, biotechnology and biomedical applications. Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, 13(2), 47-58.
[6] Heydari, S., Attaeyan, A., Bitaraf, P., Gholami, A. M., & Kamyab Moghadas, B. (2021). Investigation of modern ceramics in bioelectrical engineering with proper thermal and mechanical properties. Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, 13(3), 43-52.
[7] Ghorbani, A., Shahriari, S., & Gholami, A. M. (2021). Investigation of cell biomechanics and the effect of biomechanical stimuli on cancer and their characteristics. Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, 13(4), 67-79.
[8] Aghdam, H. A., Sanatizadeh, E., Motififard, M., Aghadavoudi, F., Saber-Samandari, S., Esmaeili, S., ... & Khandan, A. (2020). Effect of calcium silicate nanoparticle on surface feature of calcium phosphates hybrid bio-nanocomposite using for bone substitute application. Powder Technology, 361, 917-929.
[9] Hoseini, M., Malekipour, M. R., & Shirani, F. (2022). The Effect of Application of Sonic Vibration on the Bond Strength of Glass Fiber Post to Root Dentin using Duo-link and Theracem cements: An In Vitro Study. Dental Hypotheses, 13(1), 10.
[10] Haghighat, A., Momeni, H., Yeganeh, F., Haghani, Y., & Nazarifar, A. M. (2022). Nasal Reconstruction due to Basal-Cell Carcinoma using Dental Implants: A Case Report. Dental Hypotheses, 13(1), 24.
[11] Forouzan, M. R., Heidari, A., & Golestaneh, S. J. (2009). FE simulation of submerged arc welding of API 5L-X70 straight seam oil and gas pipes.
[12] Moradi, A., Heidari, A., Amini, K., Aghadavoudi, F., & Abedinzadeh, R. (2021). Molecular modeling of Ti-6Al-4V alloy shot peening: the effects of diameter and velocity of shot particles and force field on mechanical properties and residual stress. Modelling and Simulation in Materials Science and Engineering, 29(6), 065001.
[13] Heidari, A., Forouzan, M. R., & Akbarzadeh, S. (2014). Effect of friction on tandem cold rolling mills chattering. ISIJ International, 54(10), 2349-2356.
[14] Moradi, A., Heidari, A., Amini, K., Aghadavoudi, F., & Abedinzadeh, R. (2022). The effect of shot peening time on mechanical properties and residual stress in Ti-6Al-4V alloy. Metallurgical Research & Technology, 119(4), 401.
[15] Momeni, M., Amini, K., Heidari, A., & Khodaei, M. (2022). Evaluation the properties of polycaprolactone/fluorapatite nano-biocomposite. Journal of Bionic Engineering, 19(1), 179-187.
[16] Khaki, S., Heidari, A., & Kolahdooz, A. (2019). Optimizing Friction Stir Welding Process for Enhancing Strength and Hardness using Taguchi Multi-Objective Function Method. ADMT Journal, 12(3), 25-33.
[17] Li, X., Heidari, A., Nourbakhsh, S. M., Mohammadi, R., & Semiromi, D. (2022). Design and fabrication of elastic two-component polymer-metal disks using a 3D printer under different loads for the lumbar spine. Polymer Testing, 112, 107633.
[18] Mansouri, A., Heidari, A., Karimian, F., Gholami, A. M., Latifi, M., & Shahriari, S. (2021). Molecular simulation for prediction of mechanical properties of polylactic acid polymer for biotechnology applications. Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, 13(4), 31-40.
[19] Hajibagheri, H. R., Heidari, A., & Amini, R. (2021). An experimental determination of fracture toughness of API X46 steel pipeline using single edge bend and crack assessments by failure assessment diagrams. Journal of Stress Analysis, 5(2), 41-52.
[20] Samimi, P., Kazemian, M., Shirban, F., Alaei, S., & Khoroushi, M. (2018). Bond strength of composite resin to white mineral trioxide aggregate: Effect of different surface treatments. Journal of Conservative Dentistry: JCD, 21(4), 350.
[21] Rafieian, S., Hashemian, M., & Pirmoradian, M. (2018). Buckling analysis of double-layer piezoelectric nanoplates surrounded by elastic foundations and thermal environments considering nonlocal and surface energy models. Journal of Mechanics, 34(4), 483-494.
[22] Raji, Z., Hosseini, M., & Kazemian, M. (2022). Micro-shear bond strength of composite to deep dentin by using mild and ultra-mild universal adhesives. Dental Research Journal, 19.
[23] Hosseini, M., Raji, Z., & Kazemian, M. (2023). Microshear bond strength of composite to superficial dentin by use of universal adhesives with different pH values in self-etch and etch & rinse modes. Dental Research Journal, 20.
[24] Zadeh Dadashi, M., Kazemian, M., & Malekipour Esfahani, M. (2023). Color Match of Porcelain Veneer Light-Cure Resin Cements with Their Respective Try-in Pastes: Chemical Stability. Nanochemistry Research, 8(3), 205-214.
[25] Kazemian, M. (2017). An In-Vitro Study of the Antibacterial Efficacy of Cavity Liners Against Streptococcus Mutans and Lactobacillus Casei. Journal of Research in Dental and Maxillofacial Sciences, 2(2), 23-28.
[26] Mahale, R. S., Shamanth, V., Sharath, P. C., Shashanka, R., & Hemanth, K. (2021). A review on spark plasma sintering of duplex stainless steels. Materials Today: Proceedings, 45, 138-144.
[27] Chaudhari, V., Bodkhe, V., Deokate, S., Mali, B., & Mahale, R. (2019). Parametric optimization of TIG welding on SS 304 and MS using Taguchi approach. Int. Res. J. Eng. Technol, 6(5), 880-885.
[28] RaviShankar, S., & Mahale, R. (2015). A study on magneto rheological fluids and their applications. International Research Journal of Engineering and Technology, 2(4), 2023-2028.
[29] Patil, A., Banapurmath, N., Hunashyal, A. M., Meti, V., & Mahale, R. (2022). Development and Performance analysis of Novel Cast AA7076-Graphene Amine-Carbon Fiber Hybrid Nanocomposites for Structural Applications. Biointerface Research in Applied Chemistry, 12(2), 1480-1489.
[30] Chikkegouda, S. P., Gurudath, B., Sharath, B. N., Karthik, S., & Mahale, R. S. (2022). Mechanical and tribological characteristics of aluminium 2618 matrix composite reinforced with boron carbide. Biointerface Research in Applied Chemistry, 12(4).
[31] Barbaz-Isfahani, R., Dadras, H., Taherzadeh-Fard, A., Zarezadeh-Mehrizi, M. A., Saber-Samandari, S., Salehi, M., & Liaghat, G. (2022). Synergistic effects of incorporating various types of nanoparticles on tensile, flexural, and quasi-static behaviors of GFRP composites. Fibers and Polymers, 23(7), 2003-2016.
[32] Dadras, H., Barbaz‐Isfahani, R., Saber‐Samandari, S., & Salehi, M. (2022). Experimental and multi‐scale finite element modeling for evaluating healing efficiency of electro‐sprayed microcapsule based glass fiber‐reinforced polymer composites. Polymer Composites, 43(9), 5929-5945.
[33] Abedinzadeh, R., & Faraji Nejad, M. (2021). Effect of embedded shape memory alloy wires on the mechanical behavior of self-healing graphene-glass fiber-reinforced polymer nanocomposites. Polymer Bulletin, 78(6), 3009-3022.
[34] Torkan, E., & Pirmoradian, M. (2019). Efficient higher-order shear deformation theories for instability analysis of plates carrying a mass moving on an elliptical path. Journal of Solid Mechanics, 11(4), 790-808.
[35] Abedinzadeh, R., Norouzi, E., & Toghraie, D. (2021). Experimental investigation of machinability in laser-assisted machining of aluminum-based nanocomposites. Journal of Materials Research and Technology, 15, 3481-3491.
[36] Zadeh, A. R., Eghbal, A. F., Mirghazanfari, S. M., Ghasemzadeh, M. R., Nassireslami, E., & Donyavi, V. (2022). Nigella sativa extract in the treatment of depression and serum Brain-Derived Neurotrophic Factor (BDNF) levels. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 27.
[37] Hosseini, S., Golaghaei, A., Nassireslami, E., Pourbadie, N., Rahimzadegan, M., & Mohammadi, S. (2019). Neuroprotective effects of lipopolysaccharide and naltrexone co preconditioning in the photothrombotic model of unilateral selective hippocampal ischemia in rat. Acta Neurobiologiae Experimentalis, 79(1), 73-85.
[38] Elahabaadi, E., Salarian, A. A., & Nassireslami, E. (2022). Design, synthesis, and molecular docking of novel hybrids of coumarin-dithiocarbamate alpha-glucosidase inhibitors targeting type 2 diabetes mellitus. Polycyclic Aromatic Compounds, 42(7), 4317-4327.
[39] Afshary, K., Chamanara, M., Talari, B., Rezaei, P., & Nassireslami, E. (2020). Therapeutic effects of minocycline pretreatment in the locomotor and sensory complications of spinal cord injury in an animal model. Journal of Molecular Neuroscience, 70, 1064-1072.
[40] Maghsoudlou, M. A., Nassireslami, E., Saber-Samandari, S., & Khandan, A. (2020). Bone regeneration using bio-nanocomposite tissue reinforced with bioactive nanoparticles for femoral defect applications in medicine. Avicenna Journal of Medical Biotechnology, 12(2), 68.
[41] Eslami, M., Mokhtarian, A., Pirmoradian, M., Seifzadeh, A., & Rafiaei, M. (2020). Design and fabrication of a passive upper limb rehabilitation robot with adjustable automatic balance based on variable mass of end-effector. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, 1-8.
[42] Nassireslami, E., Motififard, M., Kamyab Moghadas, B., Hami, Z., Jasemi, A., Lachiyani, A., ... & Khandan, A. (2021). Potential of magnetite nanoparticles with biopolymers loaded with gentamicin drug for bone cancer treatment. Journal of Nanoanalysis, 8(3), 188-198.
[43] Esfahani, O. T., & Moshayedi, A. J. (2014). Accuracy of the Positioning Systems for the Tracking of Alzheimer's Patients-A Review. International Journal of Applied Electronics in Physics & Robotics, 2(2), 10-16.
[44] Moshayedi, A. J., Li, J., Sina, N., Chen, X., Liao, L., Gheisari, M., & Xie, X. (2022). Simulation and validation of optimized pid controller in agv (automated guided vehicles) model using pso and bas algorithms. Computational Intelligence and Neuroscience, 2022.
[45] Torkan, E., Pirmoradian, M., & Hashemian, M. (2019). Dynamic instability analysis of moderately thick rectangular plates influenced by an orbiting mass based on the first-order shear deformation theory. Modares Mechanical Engineering, 19(9), 2203-2213.
[46] Moshayedi, A. J., & Gharpure, D. C. (2012, May). Development of position monitoring system for studying performance of wind tracking algorithms. In ROBOTIK 2012; 7th German Conference on Robotics (pp. 1-4). VDE.
[47] Ghomi, F., Daliri, M., Godarzi, V., & Hemati, M. (2021). A novel investigation on the characterization of bioactive glass cement and chitosan-gelatin membrane for jawbone tissue engineering. Journal of Nanoanalysis, 8(4), 292-301.
[48] Foroutan, S., Hashemian, M., Khosravi, M., Nejad, M. G., Asefnejad, A., Saber-Samandari, S., & Khandan, A. (2021). A porous sodium alginate-CaSiO 3 polymer reinforced with graphene nanosheet: fabrication and optimality analysis. Fibers and Polymers, 22, 540-549.
[49] Biazar, E., Beitollahi, A., Rezayat, S. M., Forati, T., Asefnejad, A., Rahimi, M., ... & Heidari, M. (2009). Effect of the mechanical activation on size reduction of crystalline acetaminophen drug particles. International Journal of Nanomedicine, 283-287.
[50] Tayebi, P., Asefnejad, A., & Khonakdar, H. A. (2021). Water-based polyurethane/functionalized chitosan/zinc oxide nanoparticles nanocomposites: physical, mechanical and biocompatibility properties. Polymer-Plastics Technology and Materials, 60(13), 1474-1489.
[51] Davani, P. P., Kloub, A. W. M., & Ghadiri Nejad, M. (2020). Optimizing the first type of U-shaped assembly line balancing problems. Annals of Optimization Theory and Practice, 3(4), 65-82.
[52] Ghadirinejad, M. A. Z. Y. A. R., & Mosallaeipour, S. (2013). A new approach to optimize a flexible manufacturing cell. In 1st international conference on new directions in business, management, finance and economics (Vol. 38).
[53] Cheng, Y., Morovvati, M. R., Huang, M., Shahali, M., Saber-Samandari, S., Angili, S. N., ... & Toghraie, D. (2021). A multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine application. Journal of Materials Research and Technology, 14, 1761-1777.
[54] Du, X., Dehghani, M., Alsaadi, N., Nejad, M. G., Saber-Samandari, S., Toghraie, D., ... & Nguyen, H. C. (2022). A femoral shape porous scaffold bio-nanocomposite fabricated using 3D printing and freeze-drying technique for orthopedic application. Materials Chemistry and Physics, 275, 125302.
[55] Hashemi, S. A., Esmaeili, S., Ghadirinejad, M., Saber-Samandari, S., Sheikhbahaei, E., Kordjamshidi, A., & Khandan, A. (2020). Micro-finite element model to investigate the mechanical stimuli in scaffolds fabricated via space holder technique for cancellous bone. ADMT Journal, 13(1), 51-58.
[56] Bagherifard, A., Joneidi Yekta, H., Akbari Aghdam, H., Motififard, M., Sanatizadeh, E., Ghadiri Nejad, M., ... & Khandan, A. (2020). Improvement in osseointegration of tricalcium phosphate-zircon for orthopedic applications: an in vitro and in vivo evaluation. Medical & Biological Engineering & Computing, 58, 1681-1693.
[57] Ghadirinejad, M., Atasoylu, E., Izbirak, G., & Matina, G. S. (2016). A stochastic model for the ethanol pharmacokinetics. Iranian journal of public health, 45(9), 1170.
[58] Sun, C., Yarmohammadi, A., Isfahani, R. B., Nejad, M. G., Toghraie, D., Fard, E. K., ... & Khandan, A. (2021). Self-healing polymers using electrosprayed microcapsules containing oil: Molecular dynamics simulation and experimental studies. Journal of Molecular Liquids, 325, 115182.
[59] Salmani, M. M., Hashemian, M., Yekta, H. J., Nejad, M. G., Saber-Samandari, S., & Khandan, A. (2020). Synergic effects of magnetic nanoparticles on hyperthermia-based therapy and controlled drug delivery for bone substitute application. Journal of Superconductivity and Novel Magnetism, 33, 2809-2820.
[60] Ghayour, H., Abdellahi, M., Nejad, M. G., Khandan, A., & Saber-Samandari, S. (2018). Study of the effect of the Zn 2+ content on the anisotropy and specific absorption rate of the cobalt ferrite: the application of Co 1− x Zn x Fe 2 O 4 ferrite for magnetic hyperthermia. Journal of the Australian Ceramic Society, 54, 223-230.
[61] Khandan, A., Ozada, N., Saber-Samandari, S., & Nejad, M. G. (2018). On the mechanical and biological properties of bredigite-magnetite (Ca7MgSi4O16-Fe3O4) nanocomposite scaffolds. Ceramics International, 44(3), 3141-3148.
[62] Kordjamshidi, A., Saber-Samandari, S., Nejad, M. G., & Khandan, A. (2019). Preparation of novel porous calcium silicate scaffold loaded by celecoxib drug using freeze drying technique: Fabrication, characterization and simulation. Ceramics International, 45(11), 14126-14135.
[63] Asgari, F., Minooei, A., Abdolahi, S., Shokrani Foroushani, R., & Ghorbani, A. (2021). A new approach using Machine Learning and Deep Learning for the prediction of cancer tumor. Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, 13(4), 41-51.
[64] Malekipour Esfahani, M. H., Ghorbani, A., & Latifi, M. (2023). Evaluation of lipid nanocarriers in the form of SLN and their application in drug delivery and medical science. Nanochemistry Research, 8(1), 57-70.
[65] Ehsani, A., Mahale, R. S., Shayegan, S., Attaeyan, A., Ghorbani, A., Vasanth, S., ... & Asefnejad, A. (2022). A review of the treatment of bone tumours by hyperthermia using magnetic nanoparticles. Journal of Nanoanalysis.
[66] Esmaeili, S., Shahali, M., Kordjamshidi, A., Torkpoor, Z., Namdari, F., Saber-Samandari, S., ... & Khandan, A. (2019). An artificial blood vessel fabricated by 3D printing for pharmaceutical application. Nanomedicine Journal, 6(3), 183-194.
[67] Shirani, K., Sheikhbahaei, E., Torkpour, Z., Nejad, M. G., Moghadas, B. K., Ghasemi, M., ... & Khandan, A. (2020). A narrative review of COVID-19: the new pandemic disease. Iranian Journal of Medical Sciences, 45(4), 233.
[68] Farazin, A., Torkpour, Z., Dehghani, S., Mohammadi, R., Fahmy, M. D., Saber-Samandari, S., ... & Khandan, A. (2021). A review on polymeric wound dress for the treatment of burns and diabetic wounds. International Journal of Basic Science in Medicine, 6(2), 44-50.
[69] Angili, S. N., Morovvati, M. R., Kardan-Halvaei, M., Saber-Samandari, S., Razmjooee, K., Abed, A. M., ... & Khandan, A. (2023). Fabrication and finite element simulation of antibacterial 3D printed Poly L-lactic acid scaffolds coated with alginate/magnesium oxide for bone tissue regeneration. International Journal of Biological Macromolecules, 224, 1152-1165.
[70] Safaei, M., Abedinzadeh, R., Khandan, A., Barbaz-Isfahani, R., & Toghraie, D. (2023). Synergistic effect of graphene nanosheets and copper oxide nanoparticles on mechanical and thermal properties of composites: Experimental and simulation investigations. Materials Science and Engineering: B, 289, 116248.
[71] Mirmohammadi, H., Kolahi, J., & Khandan, A. (2023). Bibliometric Analysis of Dental Preprints which Published in 2022. Dental Hypotheses, 14(1), 1-2.
[72] Moarrefzadeh, A., Morovvati, M. R., Angili, S. N., Smaisim, G. F., Khandan, A., & Toghraie, D. (2022). Fabrication and finite element simulation of 3D printed poly L-lactic acid scaffolds coated with alginate/carbon nanotubes for bone engineering applications. International Journal of Biological Macromolecules, 224, 1496-1508.
[73] Iranmanesh, P., Ehsani, A., Khademi, A., Asefnejad, A., Shahriari, S., Soleimani, M., ... & Khandan, A. (2022). Application of 3D bioprinters for dental pulp regeneration and tissue engineering (porous architecture). Transport in Porous Media, 142(1-2), 265-293.
[74] Jasemi, A., Moghadas, B. K., Khandan, A., & Saber-Samandari, S. (2022). A porous calcium-zirconia scaffolds composed of magnetic nanoparticles for bone cancer treatment: Fabrication, characterization and FEM analysis. Ceramics International, 48(1), 1314-1325.