اثر رژیم¬های آبياري و مقادير اسيد هيوميک بر ویژگی های کمّی و کیفی بادام زميني (Arachis hypogaea L)
محورهای موضوعی : اکوفیزیولوژی گیاهان زراعیسعید مهدوی 1 , Naser Mohammadian Roshan 2 , مجید عاشوری 3 , ابراهیم امیری 4 , حمیدرضا درودیان 5
1 - دانشجوی دکتری مهندسی کشاورزی- زراعت، گروه زراعت و اصلاح نباتات، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران
2 - استادیار گروه زراعت و اصلاح نباتات، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران
3 - استادیارگروه زراعت، واحد لاهیجان، دانشگاه آزاد اسلامی ، لاهیجان، ایران
4 - استاد گروه مهندسی آب دانشگاه آزاد اسلامی واحد لاهیجان
5 - استادیار، گروه زراعت و اصلاح نباتات، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران.
کلید واژه: بادام زمینی. پروتئین دانه. عملکرد. نیاز آبی,
چکیده مقاله :
به منظور بررسی اثر رژیم های آبياري و مقادير اسيد هيوميک بر ویژگی های کمّی و کیفی بادام زميني، آزمايشی در مزرعه یکی از بادام کاران شهرستان آستانه اشرفیه استان گیلان به صورت یک بار خرد شده در قالب طرح پایه بلوک کامل تصادفي با سه تکرار در سال¬های زراعی 1397 و 1398 انجام گرفت. تیمارهای آزمایش شامل رژیم آبیاری (ديم و نياز آبي 60، 80 و 100 درصد) به عنوان عامل اول (اصلی) و مقادير اسيد هيوميک (بدون کود، 3، 6 و 9 ليتر در هکتار) به عنوان عامل دوم (فرعی) بودند. نتايج پژوهش نشان داد که اثر متقابل آبياري و اسيد هيوميک بر عملکرد بيولوژيک و عملکرد غلاف و دانه معني دار بود. بيشترين عملکرد دانه در تيمار آبياري 100 و 80 درصد نياز آبي و با مصرف اسيد هيوميک 9 ليتر در هکتار به ترتيب با ميانگين 2562 و 2526 کيلوگرم در هکتار به دست آمد. عملکرد بيولوژيک در شرایط 80 و 100 درصد نياز آبی به ترتيب در 6714 و 6772 کيلوگرم در هکتار بود. بيشترين عملکرد بيولوژيک در مقادير مختلف اسيد هيوميک در تيمارهاي 9 ليتر در هکتار به مقدار 7436 کيلوگرم در هکتار مشاهده شد. عملکرد غلاف در تيمار 80 و 100 درصد نياز آبي به ترتيب در 2427 و 2435 کيلوگرم در هکتار بود. کمترين و بيشترين عملکرد غلاف در مقادير مختلف اسيدهيوميک به ترتيب در تيمارهاي بدون کود و 9 ليتر در هکتار با میانگین 1453 و 2706 کيلوگرم در هکتار بودند. تيمار 80 درصد نياز آبي گياه و مقدار اسید هیومیک مصرفی 9 لیتر در هکتار با ميانگين 745/5 کيلوگرم در هکتار، نسبت به سایر تيمارها، داراي بيشترين میزان بود. با توجه به نتایج پژوهش می توان مقدار مصرف 9 لیتر اسیدهیومیک در هکتار را با تأمین 80 درصد نیاز آبی به عنوان شرایط مناسب برای منطقه مورد مطالعه پیشنهاد نمود.
In order to investigate the effect of irrigation regimes and amounts of humic acid on the quantitative and qualitative characteristics of peanuts, an experiment was conducted a split in a randomized complete block design. It was performed with three replications in the cropping years of 2018 and 2019 in Astana-Ashrafieh city of Guilan province. Experimental treatments included irrigation regime (rainfed and water requirement of 60, 80 and 100%) as the first factor and humic acid (without fertilizer, 3, 6 and 9 L.ha-1) as the second (secondary) factor. The results showed that the interaction of irrigation and humic acid on biological yield and pod and grain yield was significant. The highest grain yield was obtained in the irrigation treatment of 100 and 80% of water requirement and with the use of humic acid 9 L.ha-1 with an average of 2562 and 2526 kg.ha-1, respectively. Biological yield under 80 and 100% water requirement was 6714 and 6772 kg.ha-1, respectively. The highest biological yield was observed in different amounts of humic acid in treatments of 9 L.ha-1 at the amount of 7436 kg.ha-1. Pod yield in the treatment of 80 and 100% of water requirement were 2427 and 2435 kg.ha-1, respectively. The lowest and highest pod yields in different amounts of humic acid were in the treatments without fertilizer and 9 L.ha-1 with an average of 1453 and 2706 kg.ha-1, respectively. Treatment of 80% of plant water requirement and the amount of humic acid consumed at 9 L.ha-1 with an average of 745.5 kg.ha-1, had the highest rate compared to other treatments. According to the research results, the use of humic acid 9 L.ha-1 can be suggested by providing 80% of water requirement as suitable conditions for the study area.
• Abdzad Gohari, A., and A. Sadeghipour. 2019. The effect of poor irrigation and humic acid on yield and water use efficiency in beans. Journal of Water Research in Agriculture. 33(3). 383-396 (In Persian).
• Arunyanark, A., S. Jogloy, C. Akkasaeng, N. Vorasoot, T. Kesmala, R.C. Nageswara Rao, G.C. Wright, and A. Patanothai. 2008. Chlorophyll stability is an indicator of drought tolerance in peanut. Journal Agronomy Crop Science. 194: 113–125.
• Banavath, J.N., Ch. Thammineni, P. Varakumar, K. Sravani, K. Krishna, Ch. Guduru, S. Akila, P. Sudhakar, and O. Chandra. 2018. Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L). Frontiers in Chemistry. 6: 1-21.
• Barzegar, T., P. Moradi, Z. Hassanzadeh, Z. Qahramani, and J. Nikbakht. 2018. Evaluation of growth, yield and amount of vitamin C in okra using putrescine and humic acid under low water stress. Journal of Agricultural Knowledge and Sustainable Production. 28(1). 54-62. (In Persian).
• Beheshti, S., A. Tadayon, and S. Fallah. 2016. Effect of humic acid levels on yield and yield components of Lima beans under drought stress. Iranian Journal of Cereals Research. 7(2): 175-187. (In Persian).
• Boontang, S., T. Girdthai, S. Jogloy, C. Akkasaeng, N. Vorasoot, A. Patanothai, and N. Tantisuwichwong. 2010. Responses of released cultivars of peanut to terminal drought for traits related to drought tolerance. Asian Journal Plant Science. 9: 423–431.
• Celik, H., A.V. Katkat, B.B. Asik, and M.A.Turan. 2010. Effect of foliar-applied humic acid to dry weight and mineral nutrient uptake of maize under calcareous soil conditions. Commun Soil Science Plant Analysis. 42(1): 29-38.
• Crus, R.I.F., G.F. Silva, M.M.D. Silva, A.H.S. Silva, J.T.S. Junior, and E.F.D.F. Silva. 2021. Productivity of irrigated peanut plants under pulse and continuous deipping irrigation with brackish wate. Revista Caatinga. 34(1): 208-218.
• Davoodifard, M., D. Habibi, and F. Davoodi. 2012. Evaluation of the effect of salinity stress on cytoplasmic membrane stability, chlorophyll content, and yield components in wheat inoculated with growth-promoting bacteria and humic acid. Journal of Agriculture and Plant Breeding. 8(2): 71-78. (In Persian).
• Doroudian, H.R. 2010. The effect of drought stress and growth retardants on oil, protein and peanut yield in Guilan province. National Conference on Drought Stress and Water Deficiency Management in Agriculture. 1-9.
• El-Boraie, F.M., H.K. Abo-El-Ela, and A.M. Gaber. 2009. Water requirements of peanut grown in sandy soil under drip irrigation and biofertilization. Australian Journal of Basic and Applied Sciences. 3(1): 55-65.
• Haro, R., J. Dardanelli, M. Otegui, and D. Collino. 2008. Seed yield determination of peanut crops under water deficit: Soil strength effects on pod set, the source sink ratio and radiation use efficiency. Field Crops Research. 109: 24-33.
• Janila, P., S.N. Nigam, K. Manish, P. Pandey, N. Nagesh, and K. Varshney. 2013. Groundnut improvement: use of genetic and genomic tools. Plant Science. 25:125-136.
• Karakurt, Y., Ha. Unlu, and H. Padem. 2008. The influence of foliar and soil fertilization humic acid on yield and quality of pepper. Plant Soil Science. 14. 137–152.
• Khoshakhlagh, R., M.S. Sajadi, and M. Rajabi. 2012. Evaluate the overall water demand function. Journal of Natural Resources Economics. 1(1): 1-19.
• Krishna, G., K. Singh, E.K. Kim, K. Morya, and P.R. Ramteke. 2015. Progress in genetic engineering of peanut (Arachis hypogaea L.). Plant Biotechnology Journal. 13: 147–162.
• Lamb, M.C., R.B. Sorensen, C.L.Butts, P.M. Dang, C.Y. Chen, and R.S. Arias. 2017. Chemical interruption of late season flowering to improve harvested peanut maturity. Peanut Science. 44: 60–65.
• Maleki, S., H.A. Pirdashti, and M.N. Safarzadeh Vishkaei. 2016. Yield reaction and yield components of peanut to the simultaneous use of iron and sulfur. Applied Research of Plant Ecophysiology. 3(1): 59-74.
• Najafi Mode, M. 2006. Pressurized irrigation systems (translation). University of Mashhad. Pp:378. (In Persian).
• Oveyssi, M., and A. Ghorchi. 2012. Overview of the role of humic acid in mitigating the effects of water deficit stress on crops. Bimonthly Journal of Agriculture and Sustainable Development. 43: 16-21. (In Persian).
• Rastgo, B., A. Ebadi, and Gh. Parmon. 2014. Investigation of the effect of nitrogen consumption on yield and composition of safflower seed reserves.Crop Physiology Journal. 6(21): 85-102.
• Singh, A., S.N. Rania, M. Sharma, M. Chaudhary, S. Sharma, and V.R. Rajpal. 2021. Functional uses of peanut (Arachis hypogaea L.) seed storage proteins. Spanish National Research Council (CSIC) Handbook. DOI: 10.5772/intechopen.96871.
• Songsri, P., S. Jogloy, C.C. Holbrook, N. Vorasoot, T.C. Kesmala, C. Akkasaeng, and A. Patanothai. 2009. Association of root, specific leaf area and SPAD chlorophyll meter reading to water use efficiency of peanut under different available soil water. Agricultural Water Management. 14: 790-798.
• Tadayyon, A., and S. Beheshti. 2016. Effect of foliar applications of humic acid, Iron and Zinc on some Ccaracteristics of negro (Guizotia abyssinica L.). Journal of Crop Ecophysiology. 10(2): 283-296. (In Persian).
• Vorasoot, N., C. Akkasaeng, P. Songsri, S. Jogloy, and A. Patanothai. 2004. Effect of available soil water on leaf development and dry matter partitioning in 4 cultivars of peanut (Arachis hypogaea L). Songklanakarin Journal Science Technology. 26(6): 787-794.
• Wang, H., Y. Lu, Y. Liu, X. Han, S. Qiaobo, and Sh. Shi. 2015. Effects of different planting modes on peanut photosynthetic characteristics, leaf area index and yield in the sandy area. International Conference on Mechatronics, Electronic, Industrial and Control Engineering. 14: 982-986.