توسعه پایدار یا ناپایدار؟: مقایسه اقتصادی صنایع انرژی¬بَر با سودآوری خدمات اکوسیستمی در شهرستان تیران
محسن سرشاد 1 , حسین آذرنیوند 2 , محمدعلی زارع چاهوکی 3 , حامد رفیعی 4
1 - دانشجوی دکتری تخصصی رشته علوم مرتع، گروه احیای مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران.
2 - استاد گروه احیای مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران
3 - استاد گروه احیای مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران
4 - استادیار گروه اقتصاد و توسعه کشاورزی، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.
کلید واژه: آلایندگی, توسعه پایدار, سرانه درآمد, کالا و خدمات اکوسیستم, ناکارآمدی زیستمحیطی,
چکیده مقاله :
رشد صنعت در کشوهای در حال توسعه علیرغم ایجاد اشتغال قابلتوجه، با هزینههای جانبی اجتماعی- زیست محیطی بالایی همراه است. در این کشورها ارزیابی ظرفیتهای هر دو بخش صنعت و منابع زیست محیطی در ایجاد اشتغال با لحاظ نمودن هزینههای جانبی مانند آلایندهها برای آگاهی جامعه و ایجاد اشتغال همسو با توسعه پایدار ضروری است. بر همین اساس این مطالعه با ارزیابی خدمات و کالاهای اکوسیستمی و مقایسه با ارزش خالص صنایع آلاینده با اعمال هزینههای اجتماعی- زیست محیطی در شهرستان تیران (اصفهان) در سال 1402 مورد بررسی قرار گرفت. تعداد واحدهای فعال و نوع و مقدار سوختهای فسیلی مورد مصرف از اداره صنایع و معادن شهرستان و هزینههای اجتماعی- زیستمحیطی آلایندهها از گزارشهای وزارت نیرو استخراج و محاسبات آماری با استفاده از فرمولهای تجربی انجام شد. بر اساس نتایج، هر دو بخش صنعت و منابع زیست محیطی شهرستان نقش مهمی در اشتغال و اقتصاد داشت، اما هزینههای جانبی صنعت به شدت بالا بود. به عبارتی بسیاری از صنایع منطقه، آلاینده، غیرسودآور و با ناکارآمدی محیطی بالا بودند. بررسی هزینه نهایی صنایع نشان داد بسیاری از فعالیتهای تولیدی و تبدیلی بخش صنعت هزینه نهایی بالایی داشتند. همچنین بخشهای گوناگون فرآوری، تولیدی و تبدیلی، ناکارآمدی زیستمحیطی قابلتوجهی را در بین صنایع داشتند. از نظر مالی ارزش سالانه کل کالاها/ خدمات اکوسیستمی معادل 1/136,440,780 میلیونریال، ارزش سالانه کل کالاهای اکوسیستمی معادل 5/21,130,944 میلیونریال و ارزش کل محصولات بخش صنعت 8/12,166,834 میلیونریال در سال است. همچنین سرانه درآمد نیروی کار در بخش صنعت و مشاغل مبتنی بر اکوسیستم بهترتیب معادل 216/273 و 364/704 میلیونریال در سال است. بهطور کلی، بدون در نظر گرفتن اثرات مخرب نامشخص صنایع بر کالاها/ خدمات اکوسیستمی با تحمیل هزینههای اجتماعی- رفاهی و زیستمحیطی ناشی از انتشار آلایندهها، بسیاری از صنایع فعال در این منطقه سودآوری کمی داشته و به نظر میرسد سرمایهگذاری برای اشتغال مبتنی بر اکوسیستم به پایداری نزدیکتر است.
Despite creating significant employment, the growth of the industry in developin countries is associated with high social-environmental costs. In theses regions, it is necessary to evaluate the capacities of both industry sectors and environmental resources in creating employment, taking into account marginal costs such as pollutants, for the society's awareness and creating employment in line with the sustainable development. Here, this study was investigated by evaluating ecosystem services and goods and comparing with the net value of polluting industries by applying social-environmental costs in Tiran city (Isfahan) in 2023. The informaton of the active indusrial units, and the type and amount of fossil fuels consumed were obtained from the industries and mines department of the Tiran, and the social-environmental costs of pollutants were extracted from the reports of the Ministry of Energy and statistical calculations were performed using empirical formulas. According to the results, both industry and environmental resources of the city played an important role in employment and economy, but the marginal costs of the industry are extremely high. In other words, many industries in the region are polluting, unprofitable and with high environmental inefficiency. Examining the marginal cost of industries showed that many production and transformation activities in the industrial sector have a high marginal cost. Also, various sectors of processing, production and conversion had significant environmental inefficiencies among industries. Financially, the annual value of all ecosystem goods/services was equal to 136440780.1 million Rials, the annual value of all ecosystem goods was equal to 21130944.5 million Rials, and the total value of industry products was 12166834.8 million Rials per year. Also, the per capita income of a worker in the industry sector and ecosystem-based jobs was 273.216 and 704.364 million Rials per year, respectively. In general, without taking into account the uncertain destructive effects of industries on ecosystem goods/services, by imposing social-welfare and environmental costs due to the release of pollutants, many industries active in this area have little profitability and it seems that investing for ecosystem-based employment is closer to sustainability.
Abdolmohamadi, S., Ildoromi, A. and Heshmati, M. (2017) Factors affecting SOC and NPK in the Rangeland, Forest and Agriculture; Case Study Halashi Catchment, Kermanshah, Iran. Journal of Geoscience and Environment Protection, 5(13): 18-30.
Ali, S.H. and Puppim de Oliveira, J.A. (2018) Pollution and economic development: An empirical research review. Environmental Research Letters, 13(12): 123003.
Almenar, J.B., Elliot, T., Rugani, B., Philippe, B., Gutierrez, T.N., Sonnemann, G. and Geneletti, D. (2021) Nexus between nature-based solutions, ecosystem services and urban challenges. Land Use Policy, 100: 104898
Bluffstone, R., Coulston, J., Haight, R., Kline, J., Polasky, S., Wear, D. and Zook, K. (2017) Estimated values of carbon sequestration resulting from forest management scenarios (Chapter 3), Report No, 0114-301c, March, The Council on Food, Agricultural and Resource Economics, USA.
Brusseau, M.L. (2019) Sustainable development and other solutions to pollution and global change. Environmental and Pollution Science, Academic Press, pp 585-603.
Chung, Y.H., Färe, R. and Grosskopf, S. (1997) Productivity and undesirable outputs: a directional distance function approach. Journal of Environmental Management, 51(3): 229-240.
Ebadi, N., Javadi, S.A. and Moghaddasi, R. (2021) Conservation value of environmental resources in Iran’s Gurgo and Maleshoure rangelands. Environment, Development and Sustainability, 23(1): 9243–9259
Fan, Y., Bai, B., Qiao, Q., Kang, P., Zhang, Y. and Guo, J. (2017) Study on eco-efficiency of industrial parks in China based on data envelopment analysis. Journal of Environmental Management, 192(1): 107-115.
Feng, Q., Zhao, W., Fu, B., Ding, J. and Wang, S. (2017) Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China. Science of the Total Environment, 607(1): 1250-1263.
Feng, T., Chen, X., Ma, J., Sun, Y., Du, H., Yao, Y., Chen, Z., Wang, S. and Mi, Z. (2023) Air pollution control or economic development? Empirical evidence from enterprises with production restrictions. Journal of Environmental Management, 336: 117611. Haberman, D., Bennett, EM. (2019). Ecosystem service bundles in global hinterlands. Environmental Research Letters, 14:84005.
Fu, B., Xu, P., Wang, Y. and Guo, Y. (2019) Integrating ecosystem services and human demand for a new ecosystem management approach: A case study from the giant panda world heritage site. Sustainability, 12(1): 295-295.
Ghorani-Azam, A., Riahi-Zanjani, B. and Balali-Mood, M. (2016) Effects of air pollution on human health and practical measures for prevention in Iran. Journal of Research in Medical Sciences, 21(1): 65-65.
Haiping, L., Yanan, Q. and Yunying, Q. (2018) Use a spatial analysis model to assess habitat quality in Lashihai watershed. Journal of Resources and Ecology, 9(6): 622–631.
Hargreaves, Gh. and Samani, Z.A. (1982) Estimating potential evapotranspiration. Journal of the Irrigation and Drainage Division, 108(3): 225-230.
Hasan, S.S., Zhen, L., Miah, M.G., Ahamed, T. and Samie, A.I. (2020) Impact of land use change on ecosystem services: A review. Environmental Development, 34: 100527.
Hirons, M., Comberti, C. and Dunford, R. (2016) Valuing cultural ecosystem services. Annual Review of Environment and Resources, 41(1): 545–574.
Hussein, M.H.A., Ali, M., Abbas, M.H.H. and Bassouny, M.A. (2022) Effects of industrialization processes in Giza factories (Egypt) on soil and water quality in adjacent territories. Egyptian Journal of Soil Science, 62(3): 253–265.
Kosanic, A. and Petzold, J. (2020) A systematic review of cultural ecosystem services and human well-being. Ecosystem Services, 45: 101168
Leibenstein, H. (1966) Allocative efficiency vs. X-efficiency. The American Economic Review, 56(3): 392-415
Mandal, S.K. and Madheswaran, S. (2010) Environmental efficiency of the Indian cement industry: An interstate analysis. Energy Policy, 38(2): 1108-1118.
Ochoa-Hueso, R., Munzi, S., Alonso, R., Arróniz-Crespo, M., Avila, A., Bermejo, V. and Theobald, M.R. (2017) Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: Current research and future directions. Environmental Pollution, 227(2): 194-206.
Peres Núñez, W. and Primi, A. (2009) Theory and practice of industrial policy: Evidence from the Latin American experience, UN Cepal: Santiago, Chile, 187: 1–51.
Pike, R. (2008) Measuring inflation. Economic and Labor Market Review, 2(1): 59-60.
Raudsepp-Hearne. C., Peterson, G.D. and Bennett, E.M. (2010) Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proceedings of the National Academy of Sciences, 107(11): 5242–5247.
Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K. and Yoder, D.C. (1996) Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture handbook, 703. Retrieved from https://www.tucson.ars.ag.gov/unit/publications/PDFfiles/717.pdf/
Robins, N. and Trisoglio, A. (2019) Restructuring industry for sustainable development. In Policies for a small planet (pp. 157-194). Routledge. Industrial restructuring for sustainable development: Three points of departure (econstor.eu).
Scorza, F., Pilogallo, A. and Saganeiti, L. (2020) Comparing the territorial performances of renewable energy sources’ plants with an integrated ecosystem services loss assessment: A case study from the Basilicata region (Italy). Sustainable Cities and Society, 56: 102082.
Sharp, R., Chaplin-Kramer, R., Wood, S., Guerry, A., Tallis, H. and Ricketts, T.H. (2014) InVEST user’s guide: integrated valuation of environmental services and tradeoffs. The Natural Capital Project. In Stanford Woods Institute for the Environment. University of Minnesota's Institute on the Environment, the Nature Conservancy and WW Foundation Stanford, pp 1-12.
Wu, J., Li, M., Zhu, Q., Zhou, Z. and Liang, L. (2019) Energy and environmental efficiency measurement of China's industrial sectors: A DEA model with non-homogeneous inputs and outputs. Energy Economics, 78(1): 468-480.
Yin, C., Zhao, W., Cherubini, F. and Pereira, P. (2021) Integrate ecosystem services into socio-economic development to enhance achievement of sustainable development goals in the post-pandemic era. Geography and Sustainability, 2(1): 68–73
Zellner, A. (1962) An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American statistical Association, 57(298): 348-368.
Zoderer, BM., Tasser, E., Carver, S. and Tappeiner, U. (2019) Stakeholder perspectives on ecosystem service supply and ecosystem service demand bundles. Ecosystem Services, 37: 100938.