پایههایی جدید برای فضاهای با پایه چندجملهای
محورهای موضوعی : آمارمریم محمدی 1 , مریم بحرکاظمی 2
1 - دانشکده علوم ریاضی و کامپیوتر، دانشگاه خوارزمی تهران، ایران
2 - دانشکده ریاضی، دانشگاه علم و صنعت ایران، تهران، ایران
کلید واژه: Vandermonde Matrix, Gramian Matrix, Polynomial Interpolation, Monomial Bases, Matrix Decomposition,
چکیده مقاله :
پایههای متداول درونیابی، مونومیالها یا تک جملهایها هستند، بنابراین ماتریس ضرایب در حل دستگاه حاصل از درونیابی چندجملهای، ماتریس واندرموند خواهد بود که ماتریسی بد وضع و چگال بوده و پایداری جواب را با مشکل مواجه میکند. در این مقاله ما به دنبال یافتن پایههای دیگری از روی پایههای متداول مونومیالها هستیم، به طوری که عدد وضعیت ماتریس متناظر با پایههای جدید کوچکتر باشد. پایههای معرفی شده وابسته به داده بوده و به دو دسته پایههای l2-متعامد یکهی گسسته و L2-متعامد یکهی پیوسته تقسیم میشوند. این پایهها، پایههایی هستند که اعضای آنها به ترتیب تحت ضرب داخلی فضاهای l2(X) و [1,1-]L2 دو به دو متعامد بوده، یا به عبارتی ماتریس گرام متناظر با ضرب داخلی آنها ماتریس همانی میباشد. دستهی اول با اعمال تجزیه QR و تجزیه مقدار تکین بر روی ماتریس واندرموند و دستهی دوم با اعمال تجزیه چولسکی و تجزیه مقدار تکین بر روی ماتریس گرام متناظر با مونومیالها به دست میآیند. نتایج عددی به دست آمده بر کوچکتر بودن عدد وضعیت ماتریسهای ارزیابی حاصل از پایه های جدید نسبت به پایههای متداول مونومیال و همچنین دقت بالای این پایهها در درونیابی دلالت دارد.
Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the later construct a unitary Gramian matrix in the space L2[-1,1]. The first one is defined via a factorization of Vandermonde matrix while the latter is given by a factorization of the Gramian matrix corresponding to monomial bases. A discussion of various matrix factorization (e.g. Cholesky, QR, SVD) provides a variety of different bases with different properties. Numerical results show that matrices of values of the new bases have smaller condition number rather that the common monomial bases. It can also be pointed out that the new introduced bases are good candidates for interpolation.
[1] Encyklopädie der mathematischen Wissenschaften, Teubner, Leipzig, 6pp. .4091-0091
[2] K. E. Atkinson, An Introduction to Numerical Analysis, John Wiley & Sons, New York, 2nd Edition, 1989.
[3] V. Y. Pan, How Bad Are Vandermonde Matrices?, SIAM J. Matrix Anal. Appl.
. 37(2) (2016) 676-694.
[4] W. Gander, Change of basis in polynomial interpolation, Numer. Linear Algebra Appl. 2000.
[5] B. N. Datta, Numerical Linear Algebra and Applications, SIAM, Philadelphia, 2nd Edition, 2010.
[6] C. D. Aliprantis, O. Burkinshaw, Academic Press, New York, 3rd Edition, 1998.