اثر تمرین تناوبی با شدت متوسط بر نشانگرهای بیوژنز میتوکندری موشهای تغذیه شده با رژیم غذایی پر چرب
الموضوعات :احمد خواجوند عابدینی 1 , احمد عبدی 2 , علیرضا براری 3 , قاسم ترابی پلت کله 4 , مصطفی کاظمی 5 , معصومه السادات میرشفائی 6
1 - گروه فیزیولوژی ورزشی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران
2 - گروه فیزیولوژی ورزشی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران
3 - گروه فیزیولوژی ورزشی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران
4 - گروه فیزیولوژی ورزشی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران
5 - گروه فیزیولوژی ورزشی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران
6 - کارشناس ارشد گروه فیزیولوژی ورزشی، واحد تنکابن، دانشگاه آزاد اسلامی، تنکابن، ایران
الکلمات المفتاحية:
ملخص المقالة :
گزارش شده که PGC-1α با همکاری Nrf2 نقش اساسی در بیوژنز میتوکندری عضلات اسکلتی دارد. هدف از پژوهش حاضر بررسی اثر تمرین تناوبی با شدت متوسط بر نشانگرهای بیوژنز میتوکندری موشهای تغذیه شده با رژیم غذایی پر چرب بود. در این مطالعه تجربی، 24 موش صحرایی نر به طور تصادفی به سه گروه (8=n): رژیم غذایی نرمال (ND)، رژیم غذایی پرچرب (HFD) و رژیم غذایی پرچرب+تمرین (HFDT) تقسیم شدند. گروه تمرین به مدت 8 هفته و 5 جلسه در هفته بر روی نوار گردان تمرین تناوبی با شدت متوسط (MIIT) را انجام دادند. برنامه MIIT شامل 13 وهله فعالیت 4 دقیقهای با شدت 25-16 متر در دقیقه، و با دورههای استراحتی 2 دقیقهای بود. دادهها با استفاده از ANOVA در سطح معنیداری 05/0 p< آزمون شد. میزان بیان نسبی PGC-1α (0001/0=p) و Nrf2 (0001/0=p) در گروههای HFD نسبت به CN کاهش معنیداری داشت. همچنین میزان بیان نسبی PGC-1α (0001/0=p) و Nrf2 (0001/0=p) در گروههای HFDT نسبت به HFD افزایش معنیداری داشت. به نظر MIIT با افزایش بیان PGC-1α و Nrf2، یک روش مناسب برای بهبود عملکرد بیوژنز میتوکندری موشهای تغذیه شده با HFD میباشد.
Abebe, T., Mahadevan, J., Bogachus, L., Hahn, S., Black, M., Oseid, E., Robertson, R. P. (2017). Nrf2/antioxidant pathway mediates β cell self-repair after damage by high-fat diet–induced oxidative stress. JCI insight, 2(24).
Akimoto, T., Pohnert, S. C., Li, P., Zhang, M., Gumbs, C., Rosenberg, P. B., Yan, Z. J. J. o. B. C. (2005). Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. 280(20), 19587-19593.
Bassel-Duby, R., & Olson, E. N. (2016). Signaling pathways in skeletal muscle remodeling. Annu. Rev. Biochem., 75, 19-37.
Bolisetty, S., & Jaimes, E. A. (2013). Mitochondria and reactive oxygen species: physiology and pathophysiology. International journal of molecular sciences, 14(3), 6306-6344.
Botta, A., Laher, I., Beam, J., DeCoffe, D., Brown, K., Halder, S., . . . Ghosh, S. (2013). Short term exercise induces PGC-1α, ameliorates inflammation and increases mitochondrial membrane proteins but fails to increase respiratory enzymes in aging diabetic hearts. PLoS One, 8(8), e70248.
Bouviere, J., Fortunato, R. S., Dupuy, C., Werneck-de-Castro, J. P., Carvalho, D. P., & Louzada, R. A. J. A. (2021). Exercise-stimulated ROS sensitive signaling pathways in skeletal muscle. 10(4), 537.
Dankel, S. N., Staalesen, V., Bjørndal, B., Berge, R. K., Mellgren, G., & Burri, L. (2011). Tissue-specific effects of bariatric surgery including mitochondrial function. Journal of obesity, 2011.
Done, A. J., Gage, M. J., Nieto, N. C., & Traustadóttir, T. (2016). Exercise-induced Nrf2-signaling is impaired in aging. Free Radical Biology and Medicine, 96, 130-138.
Egan, B., Carson, B. P., Garcia‐Roves, P. M., Chibalin, A. V., Sarsfield, F. M., Barron, N., . . . O’Gorman, D. J. J. T. J. o. p. (2010). Exercise intensity‐dependent regulation of peroxisome proliferator‐activated receptor γ coactivator‐1α mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. 588(10), 1779-1790.
Egan, B., & Zierath, J. R. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell metabolism, 17(2), 162-184.
Fernandez-Marcos, P. J., & Auwerx, J. J. T. A. j. o. c. n. (2011). Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. 93(4), 884S-890S.
George, L., Lokhandwala, M. F., & Asghar, M. (2009). Exercise activates redox-sensitive transcription factors and restores renal D1 receptor function in old rats. American Journal of Physiology-Renal Physiology, 297(5), F1174-F1180.
Gomes, F., Chuffa, L., Scarano, W., Pinheiro, P., Fávaro, W., & Domeniconi, R. F. (2016). Nandrolone decanoate and resistance exercise training favor the occurrence of lesions and activate the inflammatory response in the ventral prostate. Andrology, 4(3), 473-480.
Gomez-Cabrera, M. C., Salvador-Pascual, A., Cabo, H., Ferrando, B., & Viña, J. (2015). Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free radical biology and medicine, 86, 37-46.
Gomez‐Cabrera, M. C., Borrás, C., Pallardó, F. V., Sastre, J., Ji, L. L., & Viña, J. (2015). Decreasing xanthine oxidase‐mediated oxidative stress prevents useful cellular adaptations to exercise in rats. The Journal of physiology, 567(1), 113-120.
Guilherme, A., Virbasius, J. V., Puri, V., & Czech, M. P. (2018). Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature reviews Molecular cell biology, 9(5), 367.
Hafstad, A. D., Boardman, N. T., Lund, J., Hagve, M., Khalid, A. M., Wisløff, U., . . . Aasum, E. (2011). High intensity interval training alters substrate utilization and reduces oxygen consumption in the heart. Journal of Applied Physiology, 111(5), 1235-1241.
Handschin, C., & Spiegelman, B. M. J. C. m. (2011). PGC-1 coactivators and the regulation of skeletal muscle fiber-type determination. 13, 351.
Irrcher, I., Ljubicic, V., & Hood, D. A. J. A. J. o. P.-C. P. (2009). Interactions between ROS and AMP kinase activity in the regulation of PGC-1α transcription in skeletal muscle cells. 296(1), C116-C123.
Li, J., Yi, X., Li, T., Yao, T., Li, D., Hu, G., . . . Cao, S. J. E. C. (2022). Effects of exercise and dietary intervention on muscle, adipose tissue, and blood IRISIN levels in obese male mice and their relationship with the beigeization of white adipose tissue. 11(3).
Lin, J., Handschin, C., & Spiegelman, B. M. (2015). Metabolic control through the PGC-1 family of transcription coactivators. Cell metabolism, 1(6), 361-370.
Little, J. P., Safdar, A., Cermak, N., Tarnopolsky, M. A., Gibala, M. J. J. A. j. o. p.-r., integrative, & physiology, c. (2010). Acute endurance exercise increases the nuclear abundance of PGC-1α in trained human skeletal muscle. 298(4), R912-R917.
Merry, T. L., & Ristow, M. (2016). Nuclear factor erythroid‐derived 2‐like 2 (NFE2L2, Nrf2) mediates exercise‐induced mitochondrial biogenesis and the anti‐oxidant response in mice. The Journal of physiology, 594(18), 5195-5207.
Narasimhan, M., Hong, J., Atieno, N., Muthusamy, V. R., Davidson, C. J., Abu-Rmaileh, N., . . . Rajasekaran, N. S. (2014). Nrf2 deficiency promotes apoptosis and impairs PAX7/MyoD expression in aging skeletal muscle cells. Free Radical Biology and Medicine, 71, 402-414.
Narkar, V. A., Downes, M., Yu, R. T., Embler, E., Wang, Y.-X., Banayo, E., . . . Juguilon, H. J. C. (2018). AMPK and PPAR# 948 Agonists Are Exercise Mimetics. 135(1), 189.
Piantadosi, C. A., Carraway, M. S., Babiker, A., & Suliman, H. B. (2008). Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circulation research, 103(11), 1232-1240.
Piantadosi, C. A., Withers, C. M., Bartz, R. R., MacGarvey, N. C., Fu, P., Sweeney, T. E., . . . Suliman, H. B. (2011). Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-inflammatory cytokine expression. Journal of Biological Chemistry, 286(18), 16374-16385.
Raffaello, A., & Rizzuto, R. (2011). Mitochondrial longevity pathways. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1813(1), 260-268.
Ramos, D., Martins, E. G., Viana-Gomes, D., Casimiro-Lopes, G., & Salerno, V. P. (2013). Biomarkers of oxidative stress and tissue damage released by muscle and liver after a single bout of swimming exercise. Applied Physiology, Nutrition, and Metabolism, 38(5), 507-511.
Ristow, M., Zarse, K., Oberbach, A., Klöting, N., Birringer, M., Kiehntopf, M., . . . Blüher, M. (2019). Antioxidants prevent health-promoting effects of physical exercise in humans. Proceedings of the National Academy of Sciences, 106(21), 8665-8670.
Sahin, K., Orhan, C., Akdemir, F., Tuzcu, M., Sahin, N., Yılmaz, I., & Juturu, V. (2017). β-Cryptoxanthin ameliorates metabolic risk factors by regulating NF-κB and Nrf2 pathways in insulin resistance induced by high-fat diet in rodents. Food and Chemical Toxicology, 107, 270-279.
Shih, P.-H., Yeh, C.-T., & Yen, G.-C. (2007). Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. Journal of agricultural and food chemistry, 55(23), 9427-9435.
Steinbacher, P., & Eckl, P. (2015). Impact of oxidative stress on exercising skeletal muscle. Biomolecules, 5(2), 356-377.
Warburton, D. E., Nicol, C. W., & Bredin, S. S. (2016). Health benefits of physical activity: the evidence. Cmaj, 174(6), 801-809.
Wu, H., Kanatous, S. B., Thurmond, F. A., Gallardo, T., Isotani, E., Bassel-Duby, R., & Williams, R. S. J. S. (2002). Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. 296(5566), 349-352.
Zhang, Y.-J., Li, J., Huang, W., Mo, G.-Y., Wang, L.-H., Zhuo, Y., & Zhou, Z.-Y. J. Z. c. y. j. A. R. (2019). Effect of electroacupuncture combined with treadmill exercise on body weight and expression of PGC-1α, Irisin and AMPK in skeletal muscle of diet-induced obesity rats. 44(7), 476-480.
Zhou, S., Sun, W., Zhang, Z., & Zheng, Y. (2014). The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. Oxidative medicine and cellular longevity, 2014.
_||_