Characterization of Dried Kiwi by Infrared Systems and Process Modeling
Subject Areas : MicrobiologyE. Aidani 1 , M. H. Haddad Khodaparast 2 , M. Kashaninejad 3
1 - دانشجوی دکتری گروه علوم و صنایع غذایی، دانشگاه فردوسی، مشهد، ایران
2 - استاد گروه علوم و صنایع غذایی، دانشگاه فردوسی، مشهد، ایران
3 - دانشیار دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
Keywords: Drying, Effective Diffusivity Coeffici, image processing, Infrared, Kiwi, Page Model,
Abstract :
Introduction: Modeling might be considered as a relationship between different variablesduring drying of food products and mass transfer kinetics and moisture diffusivity coefficientscan be used as useful tools for the optimal control of the process conditions that improve thequality of the final dried product. Kiwi fruit has favorable taste and aroma and has a highnutritional value. The aim of this research work is to investigate the effect of radiation on thecharacterization of Kiwi fruit.Materials and Methods: In this study the effect of radiation lamp power at three levels of200, 250 and 300 W, at 5, 10 and 15 cm distance from sample surface on mass transferkinetics, moisture diffusion coefficients, density, color change, texture and rehydration of theKiwi were investigated.Results: The results showed that the lamp power and the distance from the sample surfacehave significant effect on moisture loss kinetics and drying time. By increasing the infraredlamp power, the weight loss is increased (61.01 %) and by increasing the infrared lamp powerfrom 200 to 300 W, the effective diffusivity coefficient has been increased from 6.25×10-10m2/s to 13.8×10-10 m2/s. The color of the samples were analyzed by image processingtechnique and the average color changes (ΔE) for 200, 250 and 300 W were 14.02, 19.09 and21.66, respectively. The average density and rehydration for dried samples were 743kg/m3and 229.18 %, respectively.Conclusion: The effect of infrared power on effective diffusivity coefficient of Kiwi wasinvestigated and found that the effective diffusivity coefficient is increased by increasing thesource of heat. The hardness of dried kiwi slices through infrared dryer was in the range of9.55-11.08 N. In the Kiwi drying process modeling as compared with other models, Pagemodel had the best match with the experimental results.
امام جمعه، ز. و علاالدینی، ب. (1384). بهبود شاخصهای کیفی کیوی خشک شده و فرمولاسیون آن با استفاده از پیش فرایند اسمز. مجله علوم کشاورزی ایران، جلد 36، شماره 6، صفحات 1427-1421.
حسینی قابوس، س. ح. و سیدین اردبیلی، س. م. و کاشانی نژاد، م. و اسدی، غلامحسن. و اعلمی، مهران. (1395). سنتیک انتقال جرم خشک کردن ترکیبی مادون قرمز - هوای داغ کدو حلوایی. کجله علوم فذایی و تغذیه، سال 13، شماره 4، صفحات 16-5.
زکی پور ملک آبادی، ا.، حمیدی اصفهانی، ز. و عباسی، س. (1389). فرمولاسیون لواشک از ضایعات میوه کیوی. نشریه پژوهشهای علوم و صنایع غذایی ایران، جلد 6، شماره 4، صفحات 270-263.
صالحی، ف. (1394). بررسی انتقال حرارت و جرم طی خشک کردن قارچ دکمهای توسط سامانههای مجهز به مادونقرمز به روش دینامیک سیالات محاسباتی. رساله دکتری دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
صالحی، ف. و کاشانی نژاد، م. و اسدی امیرآبادی، علیرضا. (1394). بررسی سینتیک انتقال جرم در طی خشک کردن ترکیبی هوای داغ - مادون قرمز برشهای بادمجان. فصلنامه فناوری های نوین غذایی، سال 2، شماره 7، صفحات 60-53.
محمدی کرمیانه، ن. (1393). بررسی تاثیرسامانه مادون قرمز تحت خلأ بر فرآیند خشک شدن و کیفیت خمیر خرمای مضافتی. رساله دکتری دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
Afzal, M. T., Abe, T. & Hilida, Y. (1999). Energy and quality Aspect during Combined FIR Convection Drying of Barely. Journal of Food Engineering, 42, 177-188.
Allaeddini, B. & Emam-Djomeh, Z. (2005). Formulation and quality improvement of dried kiwifruit slices using an osmotic pretreatment. Iranian Journal of Agricultural Sciences, 36 (6), 1421-1427 (In Persian).
Amiri Chayjan, R., Bahrabad, S. M. T. & Rahimi Sardari, F. (2014). Modeling Infrared‐Covective Drying of Pistachio Nuts under Fixed and Fluidized Bed Conditions. Journal of Food Processing and Preservation, 38(3), 1224-1233.
Ayensu, A. (1997). Dehydration of food crops using a solar dryer with convective heat flow. Solar Energy, 59(4), 121-126.
Azoubel, P. M. & Murr, F. E. X. (2004). Mass transfer kinetics of osmotic dehydration of cherry tomato. Journal of Food Engineering, 61(3), 291-295.
Ceylan, I., Aktaş, M. & Doğan, H. (2007). Mathematical modeling of drying characteristics of tropical fruits. Applied Thermal Engineering, 27(11), 1931-1936.
Dandamrongrak, R., Young, G. & Mason, R. (2002). Evaluation of various pre-treatments for the dehydration of banana and selection of suitable drying models. Journal of Food Engineering, 55(2), 139-146.
Das, I., Das, S. & Satish. K. (2004). Specific energy and quality aspects of infrared (IR) dried. Journal of Food Engineering, 62, 9–14
Doymaz, I. (2007). The kinetics of forced convective air-drying of pumpkin slices. Journal of Food Engineering, 79, 243–248.
Doymaz, I. & Pala, M. (2003). The thin-layer drying characteristics of corn. Journal of Food Engineering, 60, 125-130.
Duttaroy, A. K. & Jørgensen, A. (2004). Effects of kiwi fruit consumption on platelet aggregation and plasma lipids in healthy human volunteers. Platelets, 15(5), 287-292.
FAO. (2013). Statistical Database. Available: http://www.fao.org/.
Hebbar, H. U., Vishwanathan, K. & Ramesh, M. (2004). Development of combined infrared and hot air dryer for vegetables. Journal of Food Engineering, 65(4), 557-563.
Henderson, S. M. (1974). Progress in developing the thin layer drying equation. Transactions of the ASAE, 17(6), 1167-1168.
Jittanit, W. (2007). Modelling of seed drying using a two-stage drying concept. PhDThesis, School of Chemical Sciences and Engineering, The University of New South Wales.
Jun, S., Krishnamurthy, K., Irudayaraj, J. & Demirci, A. (2011). Fundamentals and theory of infrared radiation.In: Pan, Z. Atungulu, G. G. (Eds.). Infrared heating for food and agricultural processing. New York.
Kumar, D. P., Hebbar, H. U. & Ramesh, M. N. (2006). Suitability of thin layer models for infrared–hot air-drying of onion slices. LWT-Food Science and Technology, 39(6), 700-705.
Midilli, A., Kucuk, H. & Yapar, Z. (2002). A new model for single-layer drying. Drying technology, 20(7), 1503-1513.
Mongpraneet, S., Abe, T. & Tsurusaki, T. (2002). Accelerated drying of welsh onion by far infrared radiation under vacuum conditions. Journal of Food Engineering, 55, 147–156.
Ratti, C. & Mujumdar. A. S. (1995). Infrared drying. in, mujumdar, A.S. (Ed.), handbook of industrial drying, vol. 1. Marcel Dekker Inc., New York., pp. 567–588.
Reis, F. R., Lenzi, M. K., de Muñiz, G. I. B., Nisgoski, S. & Masson, M. L. (2012). Vacuum drying kinetics of yacon (Smallanthus sonchifolius) and the effect of process conditions on fractal dimension and rehydration capacity. Drying Technology. 30(1), 13-19.
Sahin, S. & Sumnu, S. G. (2006). Physical properties of foods. Springer Science & Business Media.
Salehi, F. & Kashaninejad, M. (2014). Effect of different drying methods on rheological and textural properties of Balangu seed gum. Drying Technology, 32(6), 720-727.
Salehi, F., Kashaninejad, M., Sadeghi Mahoonak, A. & Ziaiifar A. M. (2015). Button mushroom drying process by infrared system. Modern Food Science and Technology journal, (In Press).
Sharma, G. P., Verma, R. C. & Pathare, P. B. (2005). Mathematical modeling of infrared radiation thin layer drying of onion slices. Journal of Food Engineering, 71, 282–286.
Strumillo, C. & Kudra. T. (1987). Drying, Principles, Applications and Design. Gordon and Breach Science Publisher, USA.
Wong, J. Y. (2001). Theory of Ground vehicles. (3rd ed). John Wiley and Sons, Inc. www.FAOSTAT.org
Yaghobi M., Tavakolipour H., Elhami Rad A.H., Ziyaolhagh H.R., Mokhtarian M., Askari B. and Armin M. (2012). Investigation of moisture loss kinetic and mathematical modeling of potato using regression analysis. Innovation in Food Science and Technology, 4 (2), 79-84.
Yaldýz, O. & Ertekýn, C. (2001). Thin layer solar drying of some vegetables. Drying Technology, 19(3-4), 583-597.
Youn, K. S. & Choi, Y. H. (1998). The Quality characteristics of Dried kiwifruit using Different Drying Methods. Food Engineering progress. 2(1), 49-54.