بهینهسازی استخراج ترکیبات زیستفعال از ضایعات پیاز زرد به کمک مایکروویو با استفاده از روش سطح پاسخ
محورهای موضوعی :
روشهای استخراج ترکیبات موثره
مهرانوش غریبی تهرانی
1
,
امیر حسین الهامی راد
2
,
الهام آذرپژوه
3
,
احمد پدرام نیا
4
,
پروین شرایعی
5
1 - دانشجوی دکتری، گروه علوم و صنایع غذایی، واحدسبزوار، دانشگاه آزاداسلامی، سبزوار، ایران.
2 - گروه علوم و صنایع غذایی، واحدسبزوار، دانشگاه آزاداسلامی، ،سبزوار،ایران
3 - استادیار پژوهش بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات،
4 - گروه علوم و صنایع غذایی، واحدسبزوار، دانشگاه آزاداسلامی، ،سبزوار،ایران
5 - استادیار پژوهش بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات،
تاریخ دریافت : 1397/12/03
تاریخ پذیرش : 1398/03/18
تاریخ انتشار : 1402/01/01
کلید واژه:
روش سطح پاسخ,
آنتیاکسیدان,
ترکیبات فنلی,
عصاره,
ضایعات پیاز,
چکیده مقاله :
یکی از تکنیکهای موثر جهت استخراج ترکیبات زیستفعال و ارزشمند موجود در موادبیولوژیکی(زیستی)، استخراج به کمک مایکروویو میباشد که منجر به تسریع فرایند حرارتدهی، کاهش زمان استخراج و بهبود کیفیت عصاره، کاهش مصرف حلال، بدون تجزیه ترکیبات حساس در برابر حرارت میشود که در مقیاس صنعتی و آزمایشگاهی قابل اجرا می باشد. ﻫﺪف از اﯾﻦ ﭘﮋوﻫﺶ، بهینهسازی فرایند استخراج عصاره ضایعات پیاز با استفاده از روش سطح پاسخ (طرح مرکب مرکزی محوری)بود. بدین منظور، تاثیر متغیرهای مستقل فراینداستخراج شامل زمان(60،90 و120 ثانیه)، توان استخراج (300،500 و700 وات) و غلظت اتانول(40،60 و80 درصد) بر ویژگیهای کیفی عصاره مانند ﺑﺎزده ﻧﻬﺎﯾﯽ اﺳﺘﺨﺮاج، قدرت آﻧﺘﯽاﮐﺴﯿﺪاﻧﯽ، ﻣﯿﺰان ترکیبات فنلی کل، کوئرستین بررسی گردید. نتایج نشان دادکه مدل بدست آمده رابطه بین متغیرهای مستقل و وابسته را به خوبی بیان می کند. میزان ترکیبات فنولی با افزایش غلظت اتانول کاهش معنیداری یافتند. افزایش همزمان زمان و توان مایکروویو منجر به افزایش معنیدار(P<0.05)گردید. بیشترین فعالیت آنتیاکسیدانی عصاره، درمدت زمان استخراج120 ثانیه، توان 300 وات و غلظت اتانول 80 درصد، حاصل شد که تحت این شرایط میزان استخراج کوئرستین(37/25 میلی گرم در 100 گرم)، میزان به دام اندازی رادیکال آزادDPPH، (60/53درصد)، راندمان استخراج عصاره(76/77درصد)، میزان ترکیبات فنلی کل (43/47 میلی گرم برکیلوگرم) و توان آنتیاکسیدانی احیای آهن Ⅲ (79/416 میکرومول برگرم) برآوردشده است. درنتیجه روش استخراج به کمک مایکروویو توسط دو حلال دوستدار محیط زیست(آب و اتانول) در غلظتهای مختلف، میتواند جهت استخراج ترکیبات زیست فعال و آنتیاکسیدانی ضایعات پیاز در مدت زمان کوتاهتر و مصرف انرژی کمتر استفاده شود
منابع و مأخذ:
باقرلو،م.،جامعی،ر.،قادرپور،ص.،حیدری،ر.1390.فعالیت آنتی اکسیدانی عصارههای متانولی چند رقم از پیازallium cepa ایرانی و توانایی آنها در خنثی سازی رادیکالهای آزاد.نشریه پژوهشهای صنایع غذایی.جلد21.شماره 4.صفحات 54-68.
Ahmadian-Kouchaksaraie, Z., Niazmand, R., Najafi, M. N. J. I. F. S., & Technologies, E. (2016). Optimization of the subcritical water extraction of phenolic antioxidants from Crocus sativus petals of saffron industry residues: Box-Behnken design and principal component analysis. 36, 234-244.
Amarowicz, R., & Weidner, S. (2009). Biological activity of grapevine phenolic compounds. In Grapevine molecular physiology & biotechnology, (pp. 389-405): Springer.
Aoyama, S., Yamamoto, Y. J. F. s., & research, t. (2007). Antioxidant activity and flavonoid content of Welsh onion
(Allium fistulosum) and the effect of thermal treatment. 13(1), 67-72.
Ballard, T. S., Mallikarjunan, P., Zhou, K., & O’Keefe, S. J. F. C. (2010). Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. 120(4), 1185-1192.
Benzie, I. F., & Strain, J. (1999). [2] Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in enzymology, 299, 15-27.
Boukroufa, M., Boutekedjiret, C., Petigny, L., Rakotomanomana, N., & Chemat, F. J. U. S. (2015). Bio-refinery of orange peels waste: a new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. 24, 72-79.
Brand-Williams, W., Cuvelier, M.-E., Berset, C. J. L.-F. s., & Technology. (1995). Use of a free radical method to evaluate antioxidant activity. 28(1), 25-30.
Chang, C.-C., Yang, M.-H., Wen, H.-M., Chern, J.-C. J. J. o. f., & analysis, d. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. 10(3).
Dang, T. T., Vuong, Q. V., Schreider, M. J., Bowyer, M. C., Altena, I. A. V., Scarlett, C. J. J. J. o. F. P., & Preservation. (2017). The effects of drying on physico‐chemical properties and antioxidant capacity of the brown alga (Hormosira banksii (Turner) Decaisne). 41(4), e13025.
Dang, T. T., Bowyer, M. C., Van Altena, I. A., Scarlett, C. J. J. S. S., & Technology. (2018). Optimum conditions of microwave-assisted extraction for phenolic compounds and antioxidant capacity of the brown alga Sargassum vestitum. 53(11), 1711-1723.
da Costa, E. M., Barbosa Filho, J. M., do Nascimento, T. G., & Macêdo, R. O. J. T. A. (2002). Thermal characterization of the quercetin and rutin flavonoids. 392, 79-84.
Ersus, S., & Yurdagel, U. J. J. o. F. E. (2007). Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. 80(3), 805-812.
Fayad, S., Nehmé, R., Tannoury, M., Lesellier, E., Pichon, C., & Morin, P. J. J. o. C. A. (2017). Macroalga Padina pavonica water extracts obtained by pressurized liquid extraction and microwave-assisted extraction inhibit hyaluronidase activity as shown by capillary electrophoresis. 1497, 19-27.
Fernández-Agulló, A., Freire, M. S., González-Álvarez, J. J. I. C., & Products. (2015). Effect of the extraction technique on the recovery of bioactive compounds from eucalyptus (Eucalyptus globulus) wood industrial wastes. 64, 105-113.
Galan, A.-M., Calinescu, I., Trifan, A., Winkworth-Smith, C., Calvo-Carrascal, M., Dodds, C., Binner, E. J. C. E., & Intensification, P. P. (2017). New insights into the role of selective and volumetric heating during microwave extraction: Investigation of the extraction of polyphenolic compounds from sea buckthorn leaves using microwave-assisted extraction and conventional solvent extraction. 116, 29-39.
Chemical Engineering and Processing: Process Intensification116: 29–39.
He, Z., Chen, Y., Chen, Y., Liu, H., Yuan, G., Fan, Y., Chen, K. J. C. j. o. o., & limnology. (2013). Optimization of the microwave-assisted extraction of phlorotannins from Saccharina japonica Aresch and evaluation of the inhibitory effects of phlorotannin-containing extracts on HepG2 cancer cells. 31(5), 1045-1054.
Hertog, M. G., Hollman, P. C., Katan, M. B. J. J. o. a., & chemistry, f. (1992). Content of potentially anticarcinogenic
flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. 40(12), 2379-2383.
Jiménez‐Escrig, A., Jiménez‐Jiménez, I., Pulido, R., Saura‐Calixto, F. J. J. o. t. S. o. F., & Agriculture. (2001). Antioxidant activity of fresh and processed edible seaweeds. 81(5), 530-534.
Ko, M.-J., Cheigh, C.-I., Cho, S.-W., & Chung, M.-S. J. J. o. F. E. (2011). Subcritical water extraction of flavonol quercetin from onion skin. 102(4), 327-333.
Le Lann, K., Jégou, C., & Stiger‐Pouvreau, V. J. P. R. (2008). Effect of different conditioning treatments on total phenolic content and antioxidant activities in two Sargassacean species: comparison of the frondose Sargassum muticum (Yendo) Fensholt and the cylindrical Bifurcaria bifurcata R. Ross. 56(4), 238-245.
Lin, Y.-P., Wu, S.-C., Huang, S.-L. J. J. o. M. S., & Technology. (2013). Effects of Microwave-Assisted Extraction on the Free Radical Scavenging and Ferrous Chelating Abilities of Monostroma Nitidum Extract. 21(5), 611-617.
Lister, E., & Wilson, P. (2001). Measurement of total phenolics and ABTS assay for antioxidant activity (personal communication). Crop Research Institute, Lincoln, New Zealand, 235-239.
Lucchesi, M. E., Chemat, F., & Smadja, J. J. J. o. C. A. (2004). Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation. 1043(2), 323-327.
Madej, K. J. T. T. i. A. C. (2009). Microwave-assisted and cloud-point extraction in determination of drugs and other bioactive compounds. 28(4), 436-446.
Martins, S., Mussatto, S. I., Martínez-Avila, G., Montañez-Saenz, J., Aguilar, C. N., & Teixeira, J. A. J. B. a. (2011). Bioactive phenolic compounds: production and extraction by solid-state fermentation. A review. 29(3), 365-373.
Naczk, M., & Shahidi, F. J. J. o. c. A. (2004). Extraction and analysis of phenolics in food. 1054(1-2), 95-111.
Nicholson, R., & Vermerris, W. (2006). Phenolic Compound Biochemistry. In): Netherlands: Springer.
Pérez-López, P., Balboa, E. M., González-García, S., Domínguez, H., Feijoo, G., & Moreira, M. T. J. B. t. (2014). Comparative environmental assessment of valorization strategies of the invasive macroalgae Sargassum muticum. 161, 137-148.
Polshettiwar, V., & Varma, R. S. J. C. S. R. (2008). Aqueous microwave chemistry: a clean and green synthetic tool for rapid drug discovery. 37(8), 1546-1557.
Rouhani, S., VALIZADEH, N., & Salimi, S. (2009). Ultrasonic Assisted Extraction of Natural Pigments from Rhizomes of Curcuma Longa L.
Siger, A., Nogala‐Kalucka, M., & Lampart‐Szczapa, E. (2008). The content and antioxidant activity of phenolic compounds in cold‐pressed plant oils. Journal of Food Lipids, 15(2), 137-149.
Silva, E.M., Rogez, H., & Larondelle, Y. 2007. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Separation and Purification Technology, 55:381-387.
Sultana, B., Anwar, F., & Ashraf, M. J. M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. 14(6), 2167-2180.
Sun, L., Zhang, J., Lu, X., Zhang, L., Zhang, Y. J. F., & Toxicology, C. (2011). Evaluation to the antioxidant activity of total flavonoids extract from persimmon (Diospyros kaki L.) leaves. 49(10), 2689-2696.
Tepe, B., Daferera, D., Sokmen, A., Sokmen, M., & Polissiou, M. J. F. c. (2005). Antimicrobial and antioxidant activities of the essential oil and various
extracts of Salvia tomentosa Miller (Lamiaceae). 90(3), 333-340.
Turner, C., Turner, P., Jacobson, G., Almgren, K., Waldebäck, M., Sjöberg, P., Karlsson, E. N., & Markides, K. E. J. G. C. (2006). Subcritical water extraction and β-glucosidase-catalyzed hydrolysis of quercetin glycosides in onion waste. 8(11), 949-959.
Vergara-Salinas, J. R., Pérez-Jiménez, J., Torres, J. L., Agosin, E., Pérez-Correa, J. R. J. J. o. a., & chemistry, f. (2012). Effects of temperature and time on polyphenolic content and antioxidant activity in the pressurized hot water extraction of deodorized thyme (Thymus vulgaris). 60(44), 10920-10929.
Wang, J., Sun, B., Cao, Y., Tian, Y., & Li, X. J. F. C. (2008). Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. 106(2), 804-810.
Wang, H., Ding, J., & Ren, N. J. T. T. i. A. C. (2016). Recent advances in microwave-assisted extraction of trace organic pollutants from food and environmental samples. 75, 197-208.
Wong-Paz, J., Contreras-Esquivel, J., Muniz-Marquez, D., Belmares, R., Rodriguez, R., Flores, P., & Aguilar, C. J. A. J. A. B. S. (2014). Microwave-assisted extraction of phenolic antioxidants from semiarid plants. 9(3), 299-310.
Xiao, X., Song, W., Wang, J., & Li, G. J. A. c. a. (2012). Microwave-assisted extraction performed in low temperature and in vacuo for the extraction of labile compounds in food samples. 712, 85-93.
Yan, Y., Chen, X., Hu, S., & Bai, X. J. J. o. c. A. (2014). Applications of liquid-phase microextraction techniques in natural product analysis: a review. 1368, 1-17.
Ying, W., & Lei, G. (2012). Optimization of microwave-assisted extraction conditions of DPPH radical scavenging components from Porphyra yezoensis by response surface methodology. In Information Technology in Medicine and Education (ITME), 2012 International Symposium on, vol. 2 (pp. 1046-1050): IEEE.
hang, H.-F., Yang, X.-H., Wang, Y. J. T. i. F. S., & Technology. (2011). Microwave assisted extraction of secondary metabolites from plants: current status and future directions. 22(12), 672-688.
_||_